The idea of this worksheet is to really understand why the FOIL system works for multiplying two binomials. We will investigate FOIL by looking at the area of a square. Recall, FOIL would be used in the following manner.

Let's examine the area of a square whose side has a length of $x+3$. The area of a square is found by squaring the side length, so the area of this square would be $(x+3)^{2}$.

Let's look at the square in pieces.

If we add the areas of the four interior pieces, we should get the whole area or $(x+3)^{2}$.

The sum of the four pieces is $x^{2}+3 x+3 x+9$ or $x^{2}+6 x+9$.

Notice this is what you would get if
you FOIL out $(x+3)^{2}$ or $(x+3)(x+3)$.

When we incorrectly say $(x+3)^{2}=x^{2}+3^{2}$, we are ignoring the two longer pieces of area $3 x$.

Simplify the following expressions by multiplying them using FOIL. Draw squares similar to the one above and label their pieces to show that you are correct.

1. $(x+4)^{2}$
2. $(5+x)^{2}$
3. $(2 x+3)^{2}$ (Ooh, this one is tricky! Define a length x , then make your side twice that plus three more.)
4. $(x+2)(2 x+3)$ (This will be a rectangle. Draw it out and then break it up into the four component pieces.)
