Discriminants and *x***-intercepts**

NAME:

There are three possibilities for the number of *x*-intercepts of a quadratic function: two, one, or zero. Fill in the following table to develop examples for these three possibilities. Choose small enough values for \mathbf{a} , \mathbf{b} , and \mathbf{c} so that you can do the operations in your head.

	Discriminant		Number of
Function	$b^2 - 4ac$	Graph	x-intercepts
	$\mathbf{b}^2 - 4\mathbf{a}\mathbf{c} = 0$		
	$b^2 - 4ac < 0$		
	$\mathbf{b}^2 - 4\mathbf{a}\mathbf{c} > 0$		

1. To form a function that will guarantee $\mathbf{b}^2 - 4\mathbf{ac} = \mathbf{0}$, do the following. Select **b** to be an even number. Then divide \mathbf{b}^2 by **4**. Choose **a** and **c** so that their product is equal to the quotient $\frac{b^2}{4}$.

- 2. To form a function that will guarantee $\mathbf{b}^2 4\mathbf{ac} < \mathbf{0}$, do the following. Select **b** to be an even number. Then divide \mathbf{b}^2 by **4**. Choose **a** and **c** so that their product is greater than the quotient $\frac{b^2}{4}$.
- 3. To form a function that will guarantee $\mathbf{b}^2 4\mathbf{ac} > \mathbf{0}$, do the following. Select **b** to be an even number. Then divide \mathbf{b}^2 by **4**. Choose **a** and **c** so that their product is less than the quotient $\frac{b^2}{4}$.
- 4. For each function, calculate $b^2 4ac$ in the second column, graph the function in the third column (standard window should be fine), and denote the number of *x*-intercepts in the fourth column.