Discriminants and x-intercepts

NAME:
There are three possibilities for the number of x-intercepts of a quadratic function: two, one, or zero. Fill in the following table to develop examples for these three possibilities. Choose small enough values for \mathbf{a}, \mathbf{b}, and \mathbf{c} so that you can do the operations in your head.

Function	Discriminant $\mathbf{b}^{2}-\mathbf{4 a c}$	Graph	Number of \boldsymbol{x}-intercepts
	$\mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0}$		
	$\mathbf{b}^{2}-\mathbf{4 a c}<\mathbf{0}$		
	$\mathbf{b}^{2}-\mathbf{4 a c}>\mathbf{0}$		

1. To form a function that will guarantee $\mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0}$, do the following.

Select \mathbf{b} to be an even number. Then divide \mathbf{b}^{2} by 4 . Choose \mathbf{a} and \mathbf{c} so that their product is equal to the quotient $\frac{b^{2}}{4}$.
2. To form a function that will guarantee $\mathbf{b}^{2}-\mathbf{4 a c}<\mathbf{0}$, do the following.

Select \mathbf{b} to be an even number. Then divide \mathbf{b}^{2} by 4 . Choose \mathbf{a} and \mathbf{c} so that their product is greater than the quotient $\frac{b^{2}}{4}$.
3. To form a function that will guarantee $\mathbf{b}^{2}-\mathbf{4 a c}>\mathbf{0}$, do the following.

Select \mathbf{b} to be an even number. Then divide \mathbf{b}^{2} by 4 . Choose \mathbf{a} and \mathbf{c} so that their product is less than the quotient $\frac{b^{2}}{4}$.
4. For each function, calculate $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$ in the second column, graph the function in the third column (standard window should be fine), and denote the number of x intercepts in the fourth column.

