| Print Name | | | |-----------------|--|--| | I IIII I Vallie | | | SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation. 1) $$\log_8 x = 4$$ Solve. 2) In a town whose population is 3000, a disease creates an epidemic. The number N of people infected t days after the disease has begun is given by the function $N(t) = \frac{1}{2} \left(\frac{1}{2} \frac{1}{2}$ | 3000 | Find the number infected after | 12 days | |---------------------|--------------------------------|----------| | $1 + 18.3e^{-0.6t}$ | Find the number infected after | 12 days. | Solve the logarithmic equation. 3) $$\log_9(x-7) + \log_9(x-7) = 1$$ 5) $\log_5(x + 4) + \log_5(x - 4) = 2$ Solve. 6) In 1998, the population of Country C was 26 million, and the exponential growth rate was 1% per year. Find the exponential growth function. 6) _____ 7) In 1985, the number of female athletes participating in Summer Olympic–Type Games was 7) 450. In 1996, about 3650 participated in the Summer Olympics in Atlanta. Assuming that P(0) = 500 and that the exponential model applies, find the value of k rounded to the hundredths place, and write the function. | 8) There are currently 50 million cars in a certain country, increasing exponentially by 5.2% | 8) | |---|-----| | annually. How many years will it take for this country to have 78 million cars? Round to the nearest year. | | | | | | | | | | | | | | | | | | 9) Susan purchased a painting in the year 2000 for \$3000. Assuming an exponential rate of inflation of 3.5% per year, how much will the painting be worth 4 years later? | 9) | | and the first of the following the first of | | | | | | | | | | | | | | | Solve the problem. | 10) | | 10) A bacterial culture has an initial population of 10,000. If its population declines to 5000 in 2 hours, when will its population be 2500? Assume that the population decreases | 10) | | according to the exponential model. | | | | | | | | | | | | | | | 11) A sample of 800 grams of radioactive substance decays according to the function | 11) | | $A(t) = 800e^{-0.036t}$, where t is the time in years. How much of the substance will be left in the sample after 30 years? Round to the nearest whole gram. | | | | | ## Provide an appropriate response. - 12) Without using a calculator, determine which of these numbers is larger: $\pi^{1.3}$ or $\pi^{2.4}$. - 12) _____ 13) Explain why \log_2 13 is between 3 and 4. 13) _____ 14) Explain why a $\log_a 5 = 5$. 14) _____ - 15) Explain how the graph of $f(x) = \ln x$ could be used to graph the function $g(x) = e^{x} 1$. 16) Explain the error in the following: $\log_3 2 + \log_3 M = \log_3 (2 + M)$. 16) _____ - 17) Explain how the equation $\log x = 1$ could be solved using the graph of $f(x) = \log x$. 18) Explain the error in the following: $\log_4 3y = \log_4 3 \cdot \log_4 y$. ## Answer Key Testname: 131_GRPREVASS_55_56 1) 4096 Objective: (5.5) Solve Logarithmic Equation I 2) 2960 Objective: (5.6) Solve Apps: Models of Limited Growth 3) 10 Objective: (5.5) Solve Logarithmic Equation II 4) $\frac{33}{8}$ Objective: (5.5) Solve Logarithmic Equation II 5) $\sqrt{41}$ Objective: (5.5) Solve Logarithmic Equation II 6) $P(t) = 26e^{0.01t}$, where P(t) is in millions and t is the number of years after 1998. Objective: (5.6) Solve Apps: Write Exponential Function 7) k = 0.19; $P(t) = 500e^{0.19t}$ Objective: (5.6) Solve Apps: Write Exponential Function 8) 9 yr Objective: (5.6) Solve Apps: Exponential Growth 9) \$3450.82 Objective: (5.6) Solve Apps: Exponential Growth 10) after 4 hr Objective: (5.6) Solve Apps: Exponential Decay 11) 272 g Objective: (5.6) Solve Apps: Exponential Decay - 12) Since the bases are the same, the base with the larger exponent is the larger number. Thus, $\pi^{2.4}$ is larger. Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions I - 13) $\log_2 8 = 3$ and $\log_2 16 = 4$. Since 8 < 13 < 16, then $3 < \log_2 13 < 4$. This is true because $\log_2 x$ is an increasing function. Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions I 14) Let $\log_a 5 = x$. Then $a^x = 5$. Replacing x with $\log_a 5$, we have $a^{-1} \log_a 5 = 5$. Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions I 15) Reflect the graph of $f(x) = \ln x$ across the line y = x and then translate it to the right one unit. Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions II 16) A sum of logarithms is not equal to a logarithm of a sum. $\log_3 2 + \log_3 M = \log_3 2M$ Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions II 17) Graph $f(x) = \log x$ and g(x) = 1 on the same set of axes. The solution is the first coordinate of the point of intersection of the two graphs. Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions II 18) A logarithm of a product is not equal to a product of logarithms. $\log_4 3y = \log_4 3 + \log_4 y$ Objective: (5.6) *Know Concepts: Exponential and Logarithmic Functions II