Discriminants and x-intercepts Solutions

NAME:
There are three possibilities for the number of x-intercepts of a quadratic function: two, one, or zero. Fill in the following table to develop examples for these three possibilities. Choose small enough values for \mathbf{a}, \mathbf{b}, and \mathbf{c} so that you can do the operations in your head.

There are many correct answers here.

Function	$\begin{gathered} \text { Discriminant } \\ \mathbf{b}^{2}-4 \mathbf{a c} \end{gathered}$	Graph	Number of x-intercepts
$y=4 x^{2}+4 x+1$	$\begin{aligned} & \mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0} \\ & b^{2}-4 a c \\ & =4^{2}-4(4)(1) \\ & =16-16 \\ & =0 \end{aligned}$		1
$y=1 x^{2}+4 x+5$	$\begin{aligned} & \mathbf{b}^{2}-4 \mathbf{a c}<\mathbf{0} \\ & b^{2}-4 a c \\ &=4^{2}-4(1)(5) \\ &= 16-20 \\ &=-4<0 \end{aligned}$		None
$y=4 x^{2}+6 x+2$	$\begin{gathered} \mathbf{b}^{2}-4 \mathbf{a c}>\mathbf{0} \\ b^{2}-4 a c \\ =6^{2}-4(4)(2) \\ =36-32 \\ =4>0 \end{gathered}$		2

1. To form a function that will guarantee $\mathbf{b}^{2}-\mathbf{4 a c}=\mathbf{0}$, do the following.

Select \mathbf{b} to be an even number. Then divide \mathbf{b}^{2} by $\mathbf{4}$. Choose \mathbf{a} and \mathbf{c} so that their product is equal to the quotient $\frac{b^{2}}{4} \cdot \begin{aligned} & \text { I chose } 4 \text { for } b \text {. So } b^{2} \text { is } 16 \text {. Divide that by } 4 \text { and get } 4 . \\ & \text { I chose a and c so that their product was } 4,4 \text { and } 1 .\end{aligned}$
2. To form a function that will guarantee $\mathbf{b}^{2}-\mathbf{4 a c}<\mathbf{0}$, do the following.

Select \mathbf{b} to be an even number. Then divide \mathbf{b}^{2} by 4 . Choose \mathbf{a} and \mathbf{c} so that their product is greater than the quotient $\frac{b^{2}}{4} \cdot$| I chose 4 for b. So b^{2} is 16 . Divide that by 4 and get 4 . |
| :--- |
| I chose a and c so that their product was greater than |
| 4,1 and 5. |

3. To form a function that will guarantee $\mathbf{b}^{2}-\mathbf{4 a c}>\mathbf{0}$, do the following.

Select \mathbf{b} to be an even number. Then divide \mathbf{b}^{2} by 4 . Choose \mathbf{a} and \mathbf{c} so that their product is less than the quotient $\frac{b^{2}}{4}$. $\begin{aligned} & \text { I chose } 6 \text { for } \text { b. So } b^{2} \text { is } 36 \text {. Divide that by } 4 \text { and get } 9 \text {. } \\ & \text { I chose a and c so that their product was less than } 9,4 \\ & \text { and 2. }\end{aligned}$
4. For each function, calculate $\mathbf{b}^{2}-4 \mathbf{a c}$ in the second column, graph the function in the third column (standard window should be fine), and denote the number of x intercepts in the fourth column.

