Discriminants and x-intercepts Solutions

NAME:

There are three possibilities for the number of *x*-intercepts of a quadratic function: two, one, or zero. Fill in the following table to develop examples for these three possibilities. Choose small enough values for \mathbf{a} , \mathbf{b} , and \mathbf{c} so that you can do the operations in your head.

Discriminant Number of			
Function	$b^2 - 4ac$	Graph	x-intercepts
$y = 4x^2 + 4x + 1$	$b^{2} - 4ac = 0$ $b^{2} - 4ac$ $= 4^{2} - 4(4)(1)$ = 16 - 16 = 0		1
$y = 1x^2 + 4x + 5$	$b^{2} - 4ac < 0$ $b^{2} - 4ac$ $= 4^{2} - 4(1)(5)$ = 16 - 20 = -4 < 0		None
$y = 4x^2 + 6x + 2$	$b^{2} - 4ac > 0$ $b^{2} - 4ac$ $= 6^{2} - 4(4)(2)$ = 36 - 32 = 4 > 0		2
1. To form a function the Select b to be an	hat will guarantee $\mathbf{b}^2 - 4\mathbf{a}$ in even number. Then divi	$\mathbf{c} = 0$, do the followi de \mathbf{b}^2 by 4 . Choose a	ng. a and c so that their
product is equal to the quotient $\frac{b}{4}$. <i>I chose 4 for b. So b² is 16. Divide that by 4 and get I chose a and c so that their product was 4. 4 and 1.</i>			

There are many correct answers here.

2. To form a function that will guarantee $\mathbf{b}^2 - 4\mathbf{ac} < 0$, do the following.	
Select b to be an even number. Then divide \mathbf{b}^2 by 4. Choose a and c so that their	r

product is greater than the quotient $\frac{b^2}{4}$.	I chose 4 for b. So b^2 is 16. Divide that by 4 and get 4. I chose a and c so that their product was greater than 4, 1 and 5.
--	--

3. To form a function that will guarantee $\mathbf{b}^2 - 4\mathbf{ac} > 0$, do the following. Select **b** to be an even number. Then divide \mathbf{b}^2 by **4**. Choose **a** and **c** so that their product is less than the quotient $\frac{b^2}{4}$. *I chose 6 for b. So b² is 36. Divide that by 4 and get 9. I chose a and c so that their product was less than 9, 4 and 2.*

4. For each function, calculate $\mathbf{b}^2 - 4\mathbf{ac}$ in the second column, graph the function in the third column (standard window should be fine), and denote the number of *x*-intercepts in the fourth column.