Factoring trinomials
 Part 2: Reverse FOIL method

NAME:

This method is essentially a way to write the information we need in an organized way. I call it Reverse FOIL because it helps to understand how FOIL works when multiplying two binomials. (A binomial is a polynomial with two terms like " $x+4$ ".)

Consider our first example of a FOIL problem reproduced below. Watch carefully where the four terms on line 2 come from and how they combine to make the three terms on line 3 . Factoring simply goes the opposite way.

$$
\begin{array}{cc}
(1 x+2)(3 x+4) & \text { line } 1 \\
=3 x^{2}+4 x+6 x+8 & \text { line } 2
\end{array}
$$

F O I L

Now, let's think through this process backwards. Say we are given $3 x^{2}+10 x+8$ and are asked to factor it. The next page goes through the thought process that we need.

Let's do another example. Let's start with $2 x^{2}+5 x-12$ and see if we can factor it. We'll start off by writing the two sets of parentheses that we know must be a part of it.
$2 x^{2}+5 x-12=(\quad)(\quad)$
Then we need to think about the term $2 x^{2}$. Again, recall this term would be formed by multiplying the First terms in the two binomials. So let's try $2 x$ and x for these terms. So we write them in.
$2 x^{2}+5 x-12=(2 x \quad)(x \quad)$
Now, we need two numbers that multiply to make -12. These will be the Last terms in our answer. Factors of -12 are listed below.

Possible factors of -12		
-1 and 12	-2 and 6	-3 and 4
-12 and 1	-6 and 2	-4 and 3

You can simply put each pair into the parentheses and check it to see if the pair works. Once you find one pair that works, you can stop. So try $(2 x-1)(x+12)$ but that doesn't multiply to make $2 x^{2}+5 x-12$, so that's not right. Try $(2 x-2)(x+6)$ and so on. You will find that only $(2 x-3)(x+4)$ works.

Try a guided example.
Factor $3 x^{2}+11 x-20$. First, fill in the First terms in the parentheses. They should multiply to make $3 x^{2}$ and both contain an x.
$3 x^{2}+11 x-20=(\quad)(\quad)$
Now write down the factors of -20.

Possible factors of -20		

Try each pair of factors in the parentheses to see which one works. Some parentheses are provided below. Stop when you find the pair that works.

$$
\begin{array}{lll}
3 x^{2}+11 x-20=(3 x &)(x &) ? ? ? ? \\
3 x^{2}+11 x-20=(3 x &)(x &) \text { ???? } \\
3 x^{2}+11 x-20=(3 x &)(x &) \text { ???? }
\end{array}
$$

Use the Reverse FOIL method to factor these expressions. It is always wise to first factor out a GCF from all terms if one exists.
a.) $2 x^{2}-9 x-18$
b.) $4 x^{2}-4 x-15$ (This is more complicated. The parentheses could be written as
 eventually works.)
c.) $2 x^{2}+10 x+12$

