This worksheet will help us practice the basic idea of a function and function notation. We will also explore domain.

1. Neither relationship shown below is a function. For each, give an x value that has more than one y value. Also, tell what those y values are (approximately, if need be) and show the points on the graph (for part a).
a.)
b.) $y^{2}=x+3$
2. For each function, find the desired value(s). Estimates will be accepted for part a. Pay attention to the scale given for the graph. Please simplify part b.
a.) Find $f(3)$ and $f(6)$.
b.) $f(x)=2 x^{2}-6 x$
Find $f(x-3)$.

3. We will work on understanding domain and range. Remember domain can be thought of as the x values that you can put into the function and that will yield acceptable y values. Range can be thought of as the \boldsymbol{y} values you can possibly get out.
a.) Consider the function $y=\sqrt{3 x+4}$. Recall you cannot take the square root of a negative number (in the real number system). All x values that would result in the square root of a negative number would be excluded from the domain. Give one such x value that would be excluded from the domain.
b.) Graph this function on your grapher. Use the window $[-2,4] \times[-1,5]$ to match the graph paper given below; this will make it easier to copy to paper. (Note: Make sure your graph looks like a curve and not a straight line. Although the calculator may not show it, the graph should hit the x-axis at $-4 / 3$. Please make that obvious on your graph.)

c.) Looking at the graph, what values of x are associated with the graph? In other words, what values of x will work in the function $y=\sqrt{3 x+4}$? This is the domain. Use interval notation.
d.) Looking at the graph, what values of y are associated with the graph? In other words, what values could we get out for y ? This is the range. Use interval notation.
