Logarithmic and exponential applications Intensity of sound

1. The loudness of a sound (that's how loud it feels to the average human ear, in decibels) is related to the ratio of the intensity of the sound to a reference level. The equation that shows this relationship is $\mathbf{b} = 10 * \log \frac{I}{I_0}$ where β is the loudness of the sound and I is the intensity of the sound. The I_0 is the reference level, called the hearing threshold. The hearing threshold is the very least an average person can hear. The table below gives some values of the intensity ratio $\frac{I}{I_0}$ and the corresponding loudness β (in decibels).

Notice the pattern emerging from the first several entries. Fill in the missing I_{I_0} and β

Loudness and intensity level of some common sounds			
Source	I_{I_0}	ß	Description
	$\frac{7^{-0}}{10^{0}}$	0	Hearing threshold
Normal breathing	10 ¹	10	Barely audible
Rustling leaves	10 ²	20	
Soft whisper (at 5 meters)	10^{3}	30	Very quiet
Library	10 ⁴	40	
Quiet office	10 ⁵	50	Quiet
Normal conversation (at 1 meter)	10 ⁶		
Busy traffic		70	
Noisy office with machines; average factory	10 ⁸		
Heavy truck (at 15 meters); Niagara Falls	10 ⁹		Constant exposure endangers hearing
Construction noise (at 3 meters)		110	
Rock concert with amplifiers (at 2 meters); jet takeoff (at 60 meters)	10 ¹²		Pain threshold
Pneumatic riveter; machine gun	10 ¹³		
Jet takeoff (nearby)		150	

values, keeping this pattern in mind. Write the I_{I_0} values as 10 raised to some power.

2. If a sound has an intensity ratio I_{I_0} of 6.43×10^5 , what is the sound's loudness β ? Use the formula $\mathbf{b} = 10 * \log I_{I_0}$. Put 6.43×10^5 in for I_{I_0} . Use your calculator to find β . Also, describe a source that might have the same intensity and loudness of this sound. Circle your answer and label it as "decibels".

3. The other night I measured the loudness ß of a plane flying overhead to be 125 decibels. What is the intensity ratio $\frac{I}{I_0}$ of the sound? Use the formula $\mathbf{b} = 10 * \log \frac{I}{I_0}$. Put in 125 for ß. Now you must solve $125 = 10 * \log \frac{I}{I_0}$. This involves isolating the *log* part and then applying the inverse exponential function to undo the *log*. Remember you want to isolate $\frac{I}{I_0}$, so stop when you get there.

4. We measured the loudness of a rock concert 10 meters from a speaker. The loudness was measured at 117.45 decibels. What is the intensity ratio I_{I_0} of the sound? Use the formula $\mathbf{b} = 10 * \log I_{I_0}$. Put in 117.45 for β . Now you must solve $117.45 = 10 * \log I_{I_0}$. This involves isolating the *log* part and then applying the inverse exponential function to undo the *log*.

More practice:

1. A dog barking has an intensity ratio of 3.18×10^6 . Find the loudness in decibels of this dog barking.

2. A second dog comes along and joins the first dog in barking. Now the intensity ratio of this sound is twice as much as it was with just one dog. Find the loudness in decibels of the two dogs barking together.

3. Manuel's office building is located on a busy corner. He measures the loudness of his office building's lobby to be 68.5 decibels. How much more intense is this sound compared to the reference level I_0 ? (This is another way to ask for I_{I_0} .)

4. Jan is protesting against a bar in her neighborhood. She measures the sound in front of the bar for several nights. The average loudness of sounds emitting from the bar is 65 decibels. Do you think she has good support for her argument? Explain.