This worksheet continues working on adding, subtracting, and multiplying complex numbers. Complex numbers like $3+2 i$ are dealt with in the same way as numbers like $3+2 x$. We will also get practice checking complex solutions by substituting them into the original equations.

1. a.) If $i=\sqrt{-1}$, then what must i^{2} be? (Hint: $i^{2}=\sqrt{-1} \sqrt{-1}$)
b.) What is i^{3} ? (Hint: $\left.i^{3}=i^{2} * i\right)$
c.) What is i^{4} ? (Hint: $i^{4}=i^{2} * i^{2}$)
2. Simplify each of the following by performing the operation and combining like terms.
a.) $.35+.65 i-(.16+.44 i)$
b.) $2.4 i+3 i+.7 i-2.9-.38+3.2$
c.) $4 i^{2}+3 i-5-(3-2 i)$
d.) $(5+.4 i)(5-.4 i)$
3. The following equations are given with their complex solutions. Check both solutions by substituting them into the original equation to see if they work. Some solutions are rounded.
a.) $-13=x^{2}-6 x \quad$ Solutions: $3 \pm 2 i$
b.) $x^{2}-.8 x+.2=0 \quad$ Solutions: $.4 \pm .2 i$
c.) $0=2 x^{2}+3 x+2$ Solutions: $-.75 \pm .66 i$
