Exploration: Elimination of Possibilities Technique Chapter 3, Number 10 "The Three Squares"

Problem: Three cousins, Bob, Chris, and Phyllis, are watching TV together. They got to talking about their ages. Bob (the oldest) remarks that their ages were all between 11 and 30. Phyllis remarked that the sum of their ages was 70 . Chris, the youngest, excitedly called out, "If you write out the squares of our ages, all of the digits 1 through 9 appear exactly once." How old was each cousin?

Guided Solution: At first glance, this seems rather daunting. So many possibilities! (In fact, there are 1,140 possible triplets among the numbers 11 through 30.) We will attempt to eliminate possibilities to narrow in on our answer. First, let's consider Bob's clue that all three ages are between 11 and 30 . Here, I have written those numbers down along with their squares. Using Chris' clue, which individual ages can be ruled out?

Possible Age	Square of Age	Possible Age	Square of Age
11	121	21	441
12	144	22	484
13	169	23	529
14	196	24	576
15	225	25	625
16	256	26	676
17	289	27	729
18	324	28	784
19	361	29	841
20	400	30	900

Write out the list of ages that we now know to be possible. Admire how we have whittled down the original list considerably.

We could certainly continue by looking at every triplet (three of the possible ages) and see if they sum to 70, but there are 220 such possible triplets. So, let's attempt to whittle down the field a little more.

Thinking about groups of three ages is hard. So let's make our job a little easier. What if we consider just two ages at a time to see if they could possibly be two of the three numbers in our triplet? If we find a pair that could not work together because of Chris’ clue, then we can say the triplet could not include those two ages together. That could further eliminate many possibilities. Consider the table below to help this along.

Along the top and left column, I have written the ages that are left after the elimination from page 1. I have crossed out all pairings along the diagonal since two cousins could not be the same age because of Chris' clue. The squares of the ages are written down the rightmost column for easy reference.

I went down the column for " 13 " and crossed out all other ages that could not possibly be in a triplet with 13 because of Chris' clue. I then copied these marks along the row for 13. Do you see why we can do this? Do the same for the other possible ages.

Of course, alternative logic can be used to eliminate pairs of numbers. For instance, can you think of another reason that 14 and 16 cannot be two of the three ages?

	13	14	16	17	18	19	23	24	25	27	28	29	
13	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	$13^{2}=169$
14	\mathbf{X}	\mathbf{X}											$14^{2}=196$
16	\mathbf{X}		\mathbf{X}										$16^{2}=256$
17	\mathbf{X}			\mathbf{X}									$17^{2}=289$
18					\mathbf{X}								$18^{2}=324$
19	\mathbf{X}					\mathbf{X}							$19^{2}=361$
23	\mathbf{X}						\mathbf{X}						$23^{2}=529$
24	\mathbf{X}							\mathbf{X}					$24^{2}=576$
25	\mathbf{X}								\mathbf{X}				$25^{2}=625$
27	\mathbf{X}									\mathbf{X}			$27^{2}=729$
28											\mathbf{X}		$28^{2}=784$
29	\mathbf{X}											\mathbf{X}	$29^{2}=841$

Here, I have completed this table below.

	13	14	16	17	18	19	23	24	25	27	28	29	
13	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	$13^{2}=169$
14	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	$14^{2}=196$
16	\mathbf{X}			$16^{2}=256$									
17	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	$17^{2}=289$
18			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	$18^{2}=324$
19	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}			\mathbf{X}	$19^{2}=361$
23	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}			$23^{2}=529$
24	\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		$24^{2}=576$
25	\mathbf{X}			$25^{2}=625$									
27	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		$27^{2}=729$
28				\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}	$28^{2}=784$
29	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	\mathbf{X}					\mathbf{X}	\mathbf{X}	$29^{2}=841$

This does help us immensely but we are still not done. Starting at the left side, we see the only two numbers that could possibly work with 13 (again, considering Chris' clue) are 18 and 28. However, this triplet would not work? Do you know why? (I can see two reasons, give one.)

In fact, the same is true for the triplet 14,18 , and 28 . What other possible triplets do you see from the table? We will form a table and explore them one by one. This may seem difficult but if we compare this chore with that of trying out 220 (or, egad! 1140) possibilities, we see we have improved our situation greatly by the process of elimination.

So, next you will see an organized list of possible triplets derived from the table above. Do you see how I made the list?

So, once we eliminate the vast majority of these 44 possibilities because we see they could not possibly add to 70, we get a much shorter list. (Remember, we did not have to actually add the numbers, just the ones digits.) We could go through these one by one, investigating each to see if the triplet has a sum of 70 and the digits 1-9 appear exactly once in their squares. Do this now.

Possible triplet from above table	Is the sum 70?	What are the squares of each number? Do the digits 1-9 appear exactly once?
$17,19,24$		
$19,23,28$		
$23,28,29$		
$24,17,29$		
$28,13,19$		
$29,16,25$		

I repeat this table from page 1 to make the above job easier.

Possible Age	Square of Age	Possible Age	Square of Age
11	121		21
12	144	22	441
13	169	23	529
14	196	24	576
15	225	25	625
16	256	26	676
17	289	27	729
18	324	28	784
19	361	29	841
20	400	30	900

So, what are the cousins' ages?
Bob is \qquad .

Phyllis is \qquad .

Chris is \qquad .

