We will see how differences in successive y-values for a function can help you find its formula.

1. Complete the table for the function, finding the difference between each two y-values.

2. If we were not given the formula $y=4 x+6$ for this function, how could we guess it from the table? In other words, for the generic formula $y=f \cdot x+e$, how would you guess f and e ?
3. Try out your method to find the formula for the following function shown in the table below.

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{f} \cdot \boldsymbol{x}+\mathbf{e}$	Difference between \boldsymbol{y}-values
0	14	
1	16	
2	20	
3	24	
5		
2		

4. One reason you might want to determine a function's formula is to find y-values for other x-values that are not near the table. Use the formula you found in the last question to find the y-value when x is 25 .
5. Let's investigate another type of function. Complete the table of finite differences below, but this time, we do it in general using the quadratic function $y=g x^{2}+f x+e$. We will also find the differences of those differences, shown in the fourth column.

6a. Do you see the pattern? How would you use the table to find the value of e ? Circle the entry in the table where e appears alone.

6 b . How do we find the value of g ? Circle the entries in the table that would be the easiest to use.

6c. If we know g, could you figure out what f has to be? Circle the entry in the table that would be the easiest to use.
7. Let's see this in action with a specific function.

x	$y=2 x^{2}+3 x+5$	Difference between y-values	Difference between entries in previous column (differences)
0	5		
1	10		
2	19		
3	32		
4	49		
5	70		

8. Recall the formula for the relationship in the previous question is $y=2 x^{2}+3 x+5$. Here, we are using the numbers 2,3 , and 5 for the variables g, f, and e, respectively. Let's see how the values of 2,3 , and 5 show up in the table.

To find e (or 5): The y-value for the x-value of 0 (which is the first entry in the y column) happens to be 5. Circle this table entry. [We saw this in general for number 6 a above.]

To find g (or 2): Notice that all of the entries in the fourth column (differences of the differences) are all "twice 2". Circle these table entries. [We saw this in general for number 6 b above.]

To find f (or 3): Likewise from numbers 5 and 6 , do you remember where " $\mathrm{f}+\mathrm{g}$ " was located in the table? Find that location in this table (circle it) and show how 3 is contained within it.
9. Use this process to find the formula for the function below.

x	$y=g x^{2}+f x+e$	Difference between y-values	Difference between entries in previous column (differences)
0	9		
1	16		
2	29		
3	48		
4	73		
5	104		

Be sure to write the formula of the function. Remember that is the whole point of analyzing the table.

10 . For the function in the previous question, what is the y-value when the x-value is 14 ?

