1. Consider the diff. eq. $\left(y e^{-2 x}+y^{3}\right) d x-e^{-2 x} d y=0$. Tell whether the equation is of each form given below. Show work and justification for your answers. If it is of a certain form, identify the parts (i.e. $P(x)$ and $Q(x)$ or $G(a x+b y)$). If it is not, say why. Do not solve the equation.
a.) Is it homogeneous (in the form $\frac{d y}{d x}=G(y / x)$)?
b.) Is it Bernoulli (in the form $\frac{d y}{d x}+P(x) \cdot y=Q(x) \cdot y^{n}$)?
c.) Does it have linear coefficients (in the form $\left.\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right) d y=0\right)$?
d.) Is it in the form $\frac{d y}{d x}=G(a x+b y)$?
2. We will solve $\frac{d y}{d x}=\sin (x-y)$. Notice it is of the form $\frac{d y}{d x}=G(a x+b y)$.
a.) First, show that $\frac{1}{1-\sin z}=\sec ^{2} z+\tan z \sec z$. (Hint: Multiply left side by $\frac{1+\sin z}{1+\sin z}$.)
b.) Use the method shown in class to solve $\frac{d y}{d x}=\sin (x-y)$.
