1. Below is the direction field for the differential equation $\frac{d v}{d t}=1-\frac{v^{3}}{8}$. Here, v stands for the velocity, at time t, of an object falling through a viscous medium due to gravity. Sketch the solutions for this differential equation for the initial conditions $v(0)=0,1,2$, and 3 . What is the terminal velocity in all of these cases? (Do not worry about units like feet/seconds.)

2. The motion of a set of particles moving along the x-axis is governed by the differential equation $\frac{d x}{d t}=t^{3}-x^{3}$. Here, $x(t)$ is the position at time t of the particle. Do not worry about units like feet/second.
a.) Recall that this quantity $\frac{d x}{d t}$ would be the velocity of a particle. If a particle is located at $x=1$ when $t=2$, what is the velocity of the particle?
${ }^{\circ} \mathrm{O}$

b.) Show that the acceleration of the particle is given by $\frac{d^{2} x}{d t^{2}}=3 t^{2}-3 t^{3} x^{2}+3 x^{5}$.

Use $\frac{d x}{d t}=t^{3}-x^{3}$ as given
to find the second
derivative. You will need to do some additional algebra.
c.) If a particle is located at $x=2$ when $t=2.5$, can it reach the location $x=1$ at a later time? Explain.

d.) Consider the direction field below for this differential equation. I have highlighted the point $(2.5,2)$ which is drawn along with the slope of the solution curve at that exact point. Notice this slope is positive as you saw in part c. This is for your information; there is no question here.

