Solve the following problems, showing your work legibly.

1. Find two distinct solutions in the form $y=e^{r t}$ to the following differential equation. Then show that each solution really does make the original equation true.
$2 y^{\prime \prime}+y^{\prime}-3 y=0$
2. For the differential equation given in number 1, form the general solution as shown in class. Then complete the solution using the initial values $y(0)=2$ and $y^{\prime}(0)=4.5$. That is, solve the initial value problem.
3. We will generalize the method for homogeneous linear second-order differential equations to hold for homogeneous linear third-order differential equations in the form $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+d y=0$. That is, if we find three distinct real roots r_{1}, r_{2}, and r_{3} for its auxiliary equation, then the functions $y=e^{r_{1} t}, y=e^{r_{2} t}$, and $y=e^{r_{3} t}$ are solutions to the differential equation. Find these solutions for the homogeneous linear third-order equation below. Also, give the general solution. (Hint: Solve the auxiliary equation by factoring by grouping.)
$y^{\prime \prime \prime}-6 y^{\prime \prime}-y^{\prime}+6 y=0$
