Elementary Algebra
Class Notes

Functions (section 10.6) ${ }^{\circ}$

Idea behind Functions:

Equations like $y=4 x+5$ or $x^{2}+3 y=16$ show relationships between variables. They tell us how x and y are related. These are called relations. They can also be represented by a table of values, a list of ordered pairs, or a graph which is just a picture of those ordered pairs. A function is a special kind of relation. Let's cover some terminology.

Definition: Domain: the set of all x values (that will give you a real number out for y)
Definition: Range: the set of all y values (that you can get out for y)

exp 1: Consider the sets of ordered pairs and their illustrations below. Determine the domain and range of these relations.
a.) $(4,1),(5,2),(6,3)$, and $(7,4)$

What is the domain? What is the range? Write your answers in set notation.
b.) $(4,1),(4,2),(5,8)$, and $(6,9)$

What is the domain? What is the range? Write your answers in set notation.

Definition: Function: a relation where every x value in the domain is assigned to exactly one y value.

In example 1 above, is the relation in part a a function? Is the relation in part b a function? Explain.
expl 2: Which of the following relations are functions?

Vertical Line Test: Given a graph, the vertical line test will tell you if it is a function. If any vertical line could be drawn so that it crosses the graph more than once, then it is not a function. (The vertical line represents a single x value. If this vertical line hits the graph more than once, that x value has more than one y value and so the relation is not a function.)

Try the vertical line test on part e above.
expl 3: Use the vertical line test to determine if the following are functions.

Interpretation: You can think of a function in a few different ways.

1. a relationship between two variables, x and y,
2. a rule that tells you what to do to an x value to get out a y value, or
3. a machine that produces a y value when you input an x value.

In certain applications, one understanding of function may serve us better than the others.

Function notation:

Check to see if the following relationships are functions.

$y=4 x+5$		$y=4$		$y^{2}=x$ (or $y= \pm \sqrt{x}$)	
x	$y=4 x+5$	x	$y=4$	x	$y^{2}=x$ (or $\left.y= \pm \sqrt{x}\right)$
-3		-3		9	
0		0		16	
3		3		25	
Is y a function of $x ?$		Is y a function of $x ?$		Is y a function of $x ?$	

Since the first and second relationships are functions, we can use function notation to make sure everyone knows. So we replace the y with $f(x)$ to write $f(x)=4 x+5$ or $g(x)=4$. Sometimes we use different letters like $g(x)$ or $h(x)$, especially if we have more than one function.

expl 4a: Find $g(0), g(-2)$, and $g(5)$ for the function $g(x)=2 x^{2}+4$.

What we want are the y
values when x is $0,-2$, and 5 .

expl 4b: Recall that the numbers $0,-2$, and 5 are x values and the $g(x)$ outputs are their corresponding y values. Write your results from part a in ordered pair notation.

Common Mistakes with Notation: As we use function notation in more complicated ways, understanding the notation and using it correctly will be of utmost importance. For instance, in the previous example, we must never write $g(x)=54$ or $g(5)=2 x^{2}+4$. Whatever you write in the parentheses should be substituted for x in the formula at the same time.
expl 5: Forensic science uses the function $H(x)=2.59 x+47.24$ to estimate the height $H(x)$ of a woman (in centimeters) given the length x (in centimeters) of her femur bone. Estimate the height of a woman whose femur bone measured 46 cm .

Optional Worksheet: "Investigating functions" gives you practice determining if a relationship is a function and using function notation.

Review of Interval Notation:

Do you remember interval notation? Fill in the third column for these sets of numbers. The real number line graphs can help visualize the sets.

Finding domain and range:

expl 6: Find the domains and ranges for the functions below. Use interval notation or set notation where appropriate.

expl 7: Find the domains of the functions below. Use interval notation or set notation where appropriate.

