Elementary algebra Class notes Linear Inequalities and Problem Solving (section 9.6)

Recall Linear Equation: an equation that could be written in the form ax + b = c where *a* is not zero.

We now have **Linear Inequality:** an inequality that could be written in the form ax + b < c

We will solve them similarly with one exception. Do you know what the exception is? We will investigate this by experimenting with the true inequality 4 < 10. Perform each operation below to see if the inequality is still true. The first is started for you.

4 < 10	4 < 10	4 < 10	4 < 10	4 < 10
Divide by -2	Multiply by 2	Add 5	Subtract 7	Multiply by -1
$\frac{4}{-2} < \frac{10}{-2}$	Ļ	Ļ	Ļ	Ļ

Again, here is a true inequality -4 > -10. Think about it to convince yourself it is true and then complete the operations below. Are the resultant inequalities also true?

-4>-10	-4 > -10	-4 > -10	-4 > -10	-4>-10
Divide by -2	Multiply by 2	Add 5	Subtract 7	Multiply by -1
$\frac{4}{-2} < \frac{10}{-2}$	Ļ	Ļ	Ļ	Ļ

So which operations made the inequalities untrue? What do we need to do to correct for this?

expl 1: Solve. Graph the solution set and write it in interval notation.

2x < -6

Check your answer by plugging a number less than -3 into the original inequality? Does it make it true? Now plug in a value greater than -3; is the inequality true?

Do you have

to switch the sign?

 $\circ \bigcirc$

Interval Notation and Graphs on the Number Line:

Let's talk about how we might represent a set of numbers like those less than -3. Graphing on the real number graph can help visualize the set.

Inequality Notation	What it means	Graph on Number Line	Interval Notation
4 < <i>x</i> < 10	the numbers in between 4 and 10, including neither	$\leftarrow \qquad \qquad$	
$-3 \le x < 5$	the numbers in between -3 and 5, including -3 but not 5	$\leftarrow \qquad \qquad$	
x > 5	the numbers greater than 5	\leftarrow \downarrow \rightarrow 0	
x < -3	the numbers less than -3 o		
x ≤ 10 O	the numbers less than or equal to 10	\leftarrow \downarrow \rightarrow 0	
Think about the endpoints of each set.	Interval n smallest number in set	largest number in set bracket: incl parenthesi	udes endpoint is: does not endpoint

expl 2: Solve. Graph the solution set and write it in interval notation.

expl 3: Solve. Graph the solution set and write it in interval notation. $6(2-x) \ge 12$

Take the time to check your answer by putting a few values (some in your solution set and some not) into the inequality.

Double or Compound Inequalities:

Applications:

expl 5: Bob and JoAnn have \$2500 to spend on their wedding reception. If the banquet hall charges a flat cleanup fee of \$75 plus \$35 per guest, what is the maximum number of people they can invite?

expl 6: A certain WNBA team has two forwards measuring 6'8" and 6'6" and two guards measuring 6'0" and 5'9". How tall a center should they hire if they wish to have a starting team average height of at least 6'5"?

Now check your answer by finding the average height of the team using the center's minimum possible height.

Worksheet: Inequalities and you 1:

This worksheet investigates the phenomenon of switching the sign when we divide or multiply by a negative. It also provides practice solving inequalities including double inequalities.