Elementary algebra
Class notes
-
O

Linear Inequalities and Problem Solving (section 9.6)
Recall Linear Equation: an equation that could be written in the form $a x+b=c$ where a is not zero.

We now have Linear Inequality: an inequality that could be written in the form $a x+b<c$

We will solve them similarly with one exception. Do you know what the exception is? We will investigate this by experimenting with the true inequality $4<10$. Perform each operation below to see if the inequality is still true. The first is started for you.

Again, here is a true inequality $-4>-10$. Think about it to convince yourself it is true and then complete the operations below. Are the resultant inequalities also true?

So which operations made the inequalities untrue? What do we need to do to correct for this?
expl 1: Solve. Graph the solution set and write it in interval notation. $2 x<-6$

Check your answer by plugging a number less than -3 into the original inequality? Does it make it true? Now plug in a value greater than -3 ; is the inequality true?

Interval Notation and Graphs on the Number Line:

Let's talk about how we might represent a set of numbers like those less than -3 . Graphing on the real number graph can help visualize the set.

expl 2: Solve. Graph the solution set and write it in interval notation. $3 x+9 \leq 5(x-1)$

expl 3: Solve. Graph the solution set and write it in interval notation.
$6(2-x) \geq 12$

Take the time to check your answer by putting a few values (some in your solution set and some not) into the inequality.

Double or Compound Inequalities:

expl 4: Solve. Graph the solution set and write it in interval notation

Applications:

expl 5: Bob and JoAnn have $\$ 2500$ to spend on their wedding reception. If the banquet hall charges a flat cleanup fee of $\$ 75$ plus $\$ 35$ per guest, what is the maximum number of people they can invite?

expl 6: A certain WNBA team has two forwards measuring 6' $8^{\prime \prime}$ and 6' $6^{\prime \prime}$ and two guards measuring $6^{\prime} 0^{\prime \prime}$ and $5^{\prime} 9^{\prime \prime}$. How tall a center should they hire if they wish to have a starting team average height of at least $6^{\prime} 5^{\prime \prime}$?

Now check your answer by finding the average height of the team using the center's minimum possible height.

Worksheet: Inequalities and you 1:

This worksheet investigates the phenomenon of switching the sign when we divide or multiply by a negative. It also provides practice solving inequalities including double inequalities.

