Elementary algebra

Class notes

We will use our "combining like terms" and function notation skills.

Polynomial Functions and Adding or Subtracting Polynomials (section 12.2)

Factors versus terms:

terms: things we are adding (or subtracting)

expls: $\underline{x} + \underline{4}$ or $\underline{2x} + \underline{3}$ or

factors: things we are multiplying (or dividing)

expls: $\underline{5} \cdot \underline{x}$ or $\underline{3}(\underline{x+2})$ or $\underline{4} \cdot \underline{x^2}$

Could be thought of as $4 \cdot x \cdot x$ or $2 \cdot 2 \cdot x \cdot x$. What are the factors then?

What are the whole numbers?

Definition: Polynomial: A polynomial in x is [an expression that could be written as] a sum of terms of the form ax^n , where a is a real number and n is a whole number.

"poly" = many "nomials" = terms

expls: $4x^2 + 3x + 8$

$$-15x^6 - 8x + 7x^2 - 5x^9$$

$$5x + 7$$

Can you pick out the axⁿ terms?

counterexpls: $4x^{1/2} + 3x + 8$ $-15x^{-6} - 8x + 7x^{-2} - 5x^9$

$$-15x^{-6} - 8x + 7x^{-2} - 5x^9$$

13

Occasionally, you'll see polynomials in two variables like $5x^2y + 7xy - 7y$. We treat them mostly the same as the polynomials above.

Which of the following are polynomials? Identify what disqualifies the non-polynomials.

a.) $4x^3$

b.)
$$5x^4 + 4\sqrt{x}$$

c.)
$$\frac{3+2x}{4x^2+5}$$

d.)
$$10x^2 + 4x - 8$$

f.)
$$14x^{-2} + 3x + 7$$

Are all terms in the form ax^n ? Find the values of a and *n* so that 6 could

be written as ax^n .

How many terms do you think are in a...

monomial?

binomial?

trinomial?

These words will be used a lot. Know the difference. Write an example of each now.

Definition: Degree of a Term: the sum of the exponents on the term's variables

expl: $5x^2y^4$ has a degree of 6

 $7x^3$ has a degree of 3

5 has a degree of 0 ° 0

Definition: Degree of Polynomial: the greatest degree of any term in the polynomial

What is the degree of the following polynomials?

a.)
$$4x^2 + 5x - 9$$

b.)
$$5x^2y^4 + 8xy - 3x^3y^4$$

c.)
$$2x - 7 + 5x^2$$

usually the plain number in front

Definition: Coefficient of a term: the numerical factor of a term

What is the coefficient of the following terms?

- a.) $5x^{2}$
- b.) 7
- c.) $x^4 \cdot 6$

"function of x"

Functions

Recall how function notation is used. Review it if needed.

A rule that tells you what to do to x.

expl 1: If $P(x) = x^2 + x + 1$ and $Q(x) = 5x^2 - 1$, find the following.

a.) Q(4)

Plug 4 into the formula for Q.

b.) *P*(-4)

Calculator note: Be sure to use parentheses when squaring a negative.

expl 2: A ball is thrown upward from the top of a building. Its height, in feet, h(t) after t seconds is given by $h(t) = -16t^2 + 40t + 25$. Find its height after 2 seconds.

Does it tell you h(t) and ask for t or does it tell you t and ask for h(t)?

Adding or Subtracting Polynomials

expl 3: Simplify by combining like terms.

$$15x^2 - 3x^2 - y$$

expl 4: Simplify by combining like terms.

$$\frac{2}{5}x^2 - \frac{1}{3}x^3 + x^2 - \frac{1}{4}x^3 + 6$$

expl 5: Simplify by combining like terms.

$$x^2y + xy - y + 10x^2y - 2y + xy$$

expl 6: Perform the indicated operation.

$$(3x-8)+(4x^2-3x+3)$$

expl 7: Perform the indicated operation.

$$3t^2 + 4$$
$$+5t^2 - 8$$

expl 8: Perform the indicated operation.

$$(2x^2 + 5) - (3x^2 - 9)$$

expl 9: Perform the indicated operation.

$$5x^3 - 4x^2 + 6x - 2$$
$$-(3x^3 - 2x^2 - x - 4)$$

expl 10: Subtract (-12x - 3) from the sum of (-5x - 7) and (12x + 3)

expl 11: Perform the indicated operation.

$$(3x^2 + 5x - 8) + (5x^2 + 9x + 12) - (x^2 - 14)$$

expl 12: Perform the indicated operation.

$$(a^2 - ab + 4b^2) + (6a^2 + 8ab - b^2)$$

expl 13: Find the area of each figure. Then add them to find an expression for the total area. As

always, simplify if needed.

The area of a rectangle is equal to its length times its width.

expl 14: If $P(x) = x^2 + x + 1$ and $Q(x) = 5x^2 - 1$, find the following. a.) P(x) + Q(x)

b.) P(x) - Q(x)

expl 15: If P(x) = 3x + 1, find the following.

a.) P(2)

b.) *P*(*a*)

c.) P(-x)

d.) P(x + h)

Plug what's in the parentheses in for x and simplify.