Elementary algebra

 Class notes$$
00
$$

Percent and Mixture Problems (section 2.6)

"Percent" means "per 100" or "part of 100"

For example, 20\% means " 20 parts out of every 100 parts". We could write 20% as $\frac{20}{100}$ or 20 (if we do that division).

Percent problems compare parts to the whole. Imagine you have a whole 70 dollars or meters or frogs or whatever. And, 16% of that 70 (or 11.2 dollars, meters, frogs, etc.) would be a part of that whole. The trick is to figure out what is the part and what is the whole in these problems.

expl 2: The number 45 is 25% of what number?

Check yourself! Does your answer make sense?

expl 3: The number 14.8 is what percent of 60 ?

expl 4: Solve. Round to the nearest cent.
A music store is advertising a 25%-off sale. Find the discount and sales price of a CD that sells regularly for $\$ 13$.

expl 5: Solve. Round to the nearest whole percent.
The cost of attending a private college rose from \$19,000 in 2000 to \$22,200 in 2006. Find the percent increase.

Mixture Problems:

Some people swear by setting up a table for mixture problems. You may also find thinking about the physical situation and the verbal models below will help. I imagine the pure substance (pure antibiotics, in example 6 below) settling to the bottom of each bottle of solution. This is pure, 100% concentrate. Then I picture these amounts of pure substance combining when I pour the two solutions together.

expl 6: Solve. Complete the table to help with calculations.
How many cubic centimeters (cc) of a 25% antibiotic solution should be added to 10 cc of 60% solution in order to get a 30% antibiotic solution?

Let x be what you are asked to find.

	Number of cc $\quad *$ Antibiotic Strength $=$ Amount of Pure Antibiotic		
25\% Solution			
60\% Solution			
30% (Final) Solution			

expl 7: The owner of a chocolate shop wants to make a new trail mix. How many pounds of chocolate-covered peanuts worth $\$ 5$ a pound should be mixed with 10 pounds of granola bites worth $\$ 2$ a pound to make a mixture that will sell for $\$ 3$ a pound?

