Here, we move on to more complicated equations and we address formulas.

 α

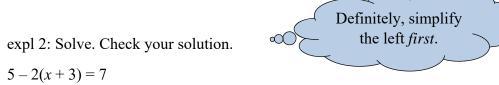
Technology Integrated Mathematics Class Notes

Algebra: Solving More Equations and Formulas (Section 7.5)

Using what we know from earlier sections, let's jump right in and see how we will solve these equations.

 $^{\circ}$

expl 1: Try each method to solve. Check your solution at the end.


4(t-5) = 32

We have a couple of options. Let's try them both.

Method 1: Divide both sides by 4 *first*. (Notice that because 32 is a multiple of 4, this does *not* create an unwieldy fraction on the right.)

Method 2: Distribute the 4 on the left *first*. (We are simplifying what we can before doing anything to both sides of the equation.)

Check the solution in the *original* equation.

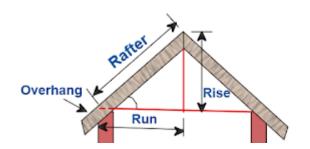
expl 3: Solve. Check your solution. 4w + 15 = 6w - 6 Here, the variable occurs on *both* sides of the equal sign. What we know works with plain numbers *still* works.

Ø

expl 4: Solve. Check your solution.

-2(x+3)-4x=10x+6

Try checking this one directly on the calculator. Enter the left side with your solution in place. Do the same for the right side. Do you get the same thing?


Formulas:

A formula will be given with one particular variable isolated. We say that that variable is *solved for*. Our goal with these formulas will be to isolate, or solve for, another variable.

expl 5: The area of the sector A shown here is given by $A = \frac{\pi R^2 a}{360}$. Here, R is the radius of the circle (from which the sector was cut) and a is the angle in the corner (in degrees). Solve for a. The angle a is called a central angle. Notice how A and a are two separate variables.

expl 6: Solve the formula $S = \frac{W}{2}(A+T)$ for A.

expl 7: The formula L = U(R + H)determines the rafter length (*L*, in inches) of a roof, where *R* is the run (in feet), *H* is the overhang (in feet), and *U* is unit line length. If a rafter 240.5 inches long is used on a roof with a run of 15.5 ft and a unit line length of 13.0, how long will the overhang be?

(source: https://www.paramvisions.com/2021/07/how-to-calculate-length-of-roof-rafters.html)