Technology Integrated Mathematics Class Notes

Geometry: Angles and Their Measures (Section 8.1)
We start off with the idea of a plane. Imagine a piece of paper that does not bend and whose edges go on forever and you have a plane. On this plane, we will draw shapes like rectangles and hexagons. These shapes are made up of angles, so let's study those first.

An angle is made up of two rays (called sides) that meet at a single point called the vertex.

This angle could be called angle ABC, or using the abbreviation for angle, $\measuredangle A B C$. It could also be simply called $\measuredangle B$ (since that would not cause confusion).

Measuring Angles:

We will measure an angle with a protractor which measures the span of the angle, not the side lengths. We will use degrees (and to some extent, minutes and seconds) to measure angles.

For reference, a full circle is 360 degrees (or 360°).
A half circle is 180° and a quarter circle is 90°.

Can you picture what 45° or 30° would look like? What about 720° ?

Protractors:

Here is a protractor. To use it, line up the center mark with the vertex of the angle and one side of the angle along one of the dashed lines at the bottom of the protractor.

Degree measures run in both directions so you can read the angle from the left or right.

At the bottom of the page, there is a protractor for you to cut out and use here and on homework.
expl 1: Use a protractor to measure the following angles. Round to the nearest whole degree.

Degrees, Minutes, and Seconds:

Sometimes we need to be more precise than the number of degrees. We have these smaller units.
We define $1^{\circ}=60$ minutes, abbreviated 60^{\prime}
and also $1^{\prime}=60$ seconds, abbreviated $60^{\prime \prime}$. (These are unrelated to time.)
An angle could be said to be $55^{\circ} 45^{\prime} 20^{\prime \prime}$. Most trade applications require only precision to the nearest degree. However, we will see a few problems involving minutes and seconds.
expl 2: A machinist needs to create a metal wedge in the shape of this larger triangle. Notice that the measure of $\measuredangle B A C$ is given. Find the measure of $\measuredangle B A D$.

Definitions: An acute angle is an angle that is less than 90°. A right angle is an angle that is exactly 90°. An obtuse angle is an angle that is greater than 90°. A straight angle is an angle that measures exactly 180°.
expl 3: Label each angle below with its proper type.
a.)
b.)
c.)

d.)

Definition: Two lines that meet at a right angle (or 90°) are called perpendicular.
expl 4: Draw an angle that is 45 degrees. Draw another angle that is 120 degrees.

Definitions: For a pair of intersecting lines, the opposite angles are called vertical angles. If a straight angle is broken into two angles, they are called adjacent angles.

Angle Facts:

There are several important facts we will use in our work.

1. When two lines meet (like above), the vertical angles are always equal.
2. A pair of adjacent angles always sum to 180 degrees.
3. Never trust an obtuse angle. They are never right. (Okay, that is just a bad joke.)
4. The interior angles of a triangle always sum to 180 degrees.

Definitions: A triangle is formed by three segments, called sides, that meet at vertices (plural of vertex).
expl 5: Measure each interior angle and sum them. Do you get 180° ?

expl 6: A triangle has been drawn (not shown) with two angles measuring 25° and 80°. What must the third angle measure? Do not forget units.
expl 7: One angle below is given. Find the other angles measures without using a protractor.

Parallel and Transversal Lines:

One last fact we will use concerns the following pair of parallel lines cut by a transversal line.
Definitions: Two lines are parallel if they are always the same distance apart.

If a pair of parallel lines is cut through by a third line, this is called a transversal line.

We can talk about alternate interior angles or corresponding angles.

Angles d and f are alternate interior angles. Can you name another pair? Do you see how the measures of alternate interior angles are related?

Angles a and e are corresponding angles. Can you name another three pairs? Do you see how the measures of corresponding angles are related?

Alternate Interior Angles Theorem:

As you may have noticed on the last page, alternate interior angles are always equal.

Corresponding Angles Theorem:

As you may have noticed on the last page, corresponding angles are always equal.
expl 8: Consider the pair of parallel lines and their transversal drawn below. One angle measure is given. Find the missing angles' measures.

