Technology Integrated Mathematics Class Notes

Geometry: Triangles, Regular Hexagons, and Irregular Polygons (Section 8.3)
Here, we explore and define triangles and hexagons. We will have many formulas concerning triangles including the Pythagorean Theorem. We will also look at irregular polygons like the floor of someone's garage with a small room tacked on one end.

Again, let's get started with some definitions.
Recall: Definition: A polygon is a closed planar figure containing three or more angles and bounded by three or more straight lines. The word translates to "many sides".

Definitions: Triangle: A triangle is a polygon with three sides and therefore three angles.
An equilateral triangle is one where all of the sides are of equal length. An isosceles triangle is one where at least two sides are equal in length. A scalene triangle is one in which no sides are equal in length.

An acute triangle is one where all three angles are acute (less than 90°).
An obtuse triangle is one that contains one obtuse angle (greater than 90°).
A right triangle is one that contains a right angle (equal to 90°).

More about Right Triangles:

The sides that make up the right angle are called legs. The hypotenuse is the side opposite the right angle. The hypotenuse is always the longest side.

The Pythagorean Theorem will apply to right triangles only.

Pythagorean Theorem:

About 4,000 years ago, people started realizing a funny property of right triangles. It is named after a Greek philosopher named Pythagoras who lived around 2500 years ago. He founded a school and would not let his students eat beans because he thought farts let out a bit of your soul. Anyhoo...

Pythagorean Theorem

For any right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
$c^{2}=a^{2}+b^{2}$

Equivalent Forms of the Pythagorean Theorem

> They solved for each side. Very helpful.
expl 1: Find the missing side length. Include units. Round to the nearest tenth.

expl 2: Find the missing side length. Include units. Round to the nearest tenth.

Finding the Area of a Triangle:

We have a few different formulas to help us find the area of a triangle. Our first one works for any triangle. Notice that you'll need to know the base and height of the triangle.

Area of a Triangle

$$
\begin{aligned}
& \text { Area, } A=\frac{1}{2} b h \quad \text { or } \quad A=\frac{b h}{2} \\
& b=\text { base } h=\text { height }
\end{aligned}
$$

A triangle can be thought of as half a parallelogram. Do you remember its area?

Above, h is the triangle's height. This is the perpendicular distance from the base (labeled b) to the third vertex.
expl 3: Find the area of this triangle. Include units (square feet).

Hero's Formula:

If you are only given the side lengths of a triangle, can you find its area? You betcha!
In fact, we have a very cool formula that was discovered almost 2000 years ago by the Greek mathematician Hero or Heron.

Here is a triangle with sides a, b, and c.
First, find half of the perimeter (or semiperimeter). We'll call this s. So, $s=\frac{a+b+c}{2}$.

Next, use the formula below to find the area.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

expl 4: Find the area of this triangle. Include units (square feet). Round to the nearest tenth if needed.

Here are two more formulas. You can only use them, respectively, for isosceles and equilateral triangles. It is up to you if you use them at all.

$$
\begin{aligned}
& \text { Area of an Isosceles Triangle } \\
& \text { Area, } A=\frac{1}{2} b \sqrt{a^{2}-\left(\frac{b}{2}\right)^{2}}
\end{aligned}
$$

Area of an Equilateral Triangle Area, $A=\frac{a^{2} \sqrt{3}}{4}=0.433 a^{2}$

Regular Polygons, Pentagons, and Hexagons:

Definition: Regular polygon: A regular polygon is one which has equal side lengths.
Equilateral triangles and squares are regular polygons.
Definition: Regular pentagon: A regular pentagon is a polygon with five sides, all of equal length. Its interior angles are also all equal.

Definition: Regular hexagon: A regular hexagon is a polygon with six sides, all of equal length. Its interior angles are also all equal.

We have the formula for the area of a regular hexagon. Also, we know the relationship between the dimensions of a regular hexagon.

Area of a Regular Hexagon
Area, $A=\frac{3 a^{2} \sqrt{3}}{2} \approx 2.598 a^{2}$

Carefully look at what they are measuring.

Dimensions of a Regular Hexagon

Distance across the corners, $d=2 a$ or $a=0.5 d$
Distance across the flats, $f \approx 1.732 a$ or $a \approx 0.577 f$

expl 5a: Find the missing dimension for this regular hexagon. Round to the nearest tenth if needed and include units.

expl 5b: Find the area of the regular hexagon pictured above. Round to the nearest tenth if needed and include units.
expl 6: Find the missing dimension for this regular hexagon.
Round to the nearest tenth if needed and include units.

Irregular Polygons:

Irregular polygons will be made up of assorted polygons stuck together. Here are some examples. Notice how you can break them up into triangles, rectangles, trapezoids, etc.

expl 7: How many square feet of drywall is needed for this wall?

