Technology Integrated Mathematics Class Notes

Trigonometry: Angles and Right Triangles (Section 10.1)
We have already learned some basic information about angles and how they are measured. Here, we get into more detail. We will see radian measure which is an alternative to degrees. We will see how degrees can be broken into smaller pieces called seconds and minutes. We will continue exploring right triangles.

Definitions: Seconds and Minutes: A single degree can be broken into 60 equal pieces called minutes. A minute can be further broken down into 60 equal pieces called seconds. The book gives us these conversion factors and some helpful abbreviations.

For most technical purposes, we round angles to the nearest minute. In the trades, we will usually round to the nearest degree.
expl 1: Write the following in terms of degrees and minutes. a.) 46.55°

b.) $39^{1 / 4}{ }^{\circ}$

Converting Angle Units Using a Calculator

Scientific calculators have special keys designed for entering angles in degrees and minutes and for performing angle conversions. There is normally a key marked ω that is used for entering and converting angles. You may instead see a key marked \triangle OMS or $\triangle D 0$ to be used for this purpose. Because the procedures for doing these conversions vary greatly from model to model, we leave it to each student to learn the key sequences from his or her calculator's instruction manual.
expl 2: Convert to decimal degree measure. Round to the nearest hundredth if needed. $45^{\circ} 39^{\prime}$

Radian Measure:

A full circle measures 360°. Radians are also used to measure angles and a full circle is said to be 2π radians. We have these helpful conversion factors.

$$
1 \text { radian }=\frac{180^{\circ}}{\pi} \text { or about } 57.296^{\circ}
$$

$$
\text { Radians }=\text { degrees } \cdot \frac{\pi}{180^{\circ}}
$$

$$
\text { Degrees }=\text { radians } \cdot \frac{180^{\circ}}{\pi}
$$

expl 3: Write the angle $641_{2}{ }^{\circ}$ in radians. Use the π button on the calculator; do not round π to 3.14. Round the final answer to the nearest hundredth. Include "radians" or "rad" as the units.

Sectors:

Definition: Sector: a wedge-shaped portion of a circle taken from the center out toward the circle itself.

The book gives us these formulas. We will use radian measures.

expl 4: Find the area A and arc length S of the following sector. Draw a picture of the arc. $a=1.2$ radians $r=130$ feet

Linear and Angular Speed:

Radians are used to describe the rotation of an object around a single central point. As the object travels in this circle, we can find its angular speed, just as we would find the linear speed of a car travelling along a straight line.

Linear Speed:

An object travels a distance d in time t. Its average linear speed v is $v=\frac{d}{t}$. The units we use is a compound unit found by dividing the distance units by the time units.

Example: A car travels 50 miles in two hours. The car's average linear speed is $50 / 2$ or 25 miles per hour.

Angular Speed:

An object travels along a circular arc defined by an angle measured as a radians in time t. Its average angular speed is $w=\frac{a}{t}$. The units we use is a compound unit found by dividing radians by the time units.

Example: A flywheel rotates through an angle of 2.50 radians (about 40% of a full circle) in 1.4 seconds. The flywheel's average angular speed is $2.50 / 1.4$ or about 1.8 radians per second.
expl 5: The blades of a fan have a radius of 16.5 inches and they turn one revolution every 0.125 seconds.
a.) Calculate the linear speed of the tip of a blade. Round to the nearest whole number.

b.) Calculate the average angular speed of the fan blade. Round to two decimal places.

Right Triangles:

We will move on from here to study trigonometry of right triangles. Recall that a right triangle is one which contains one right angle $\left(90^{\circ}\right)$. The right angle should be marked by a little square corner.

Recall we have the Pythagorean Theorem (copied below) to help us find missing sides of right triangles. You will practice that a bit in the homework but we will focus here on other truths about some special triangles.

Pythagorean Theorem

For any right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
$c^{2}=a^{2}+b^{2}$

Equivalent Forms of the Pythagorean Theorem

They solved for each side. Very helpful.

$c=\sqrt{a^{2}+b^{2}} \quad a=\sqrt{c^{2}-b^{2}} \quad b=\sqrt{c^{2}-a^{2}}$

Special Right Triangles:

We will see these right triangles a lot. We call them the $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle and the $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle. There are very specific relationships among the side lengths.

expl 6: Find the quantities indicated using the known ratios among sides. Round sides to the nearest tenth. Include units.
a.) angle $T=$
b.) side length $t=$
c.) side length $e=$
expl 7: Find the quantities indicated using the known ratios among sides. Round sides to the nearest tenth. Include units.
a.) angle $A=$

b.) side length $c=$
expl 8: Find the depth d of the V-slot shown here.
Round to the nearest hundredth of an inch.

