College Algebra Class Notes Class Notes O O O Properties of Functions (section 3.3) We will talk about symmetry, when a function is going up or down, extreme values, and how fast a function is changing. We will revisit the concept of symmetry and explore concepts such as the largest or smallest y-value on a graph. The concepts are intuitive but we will use algebra to describe them. Worksheet: Investigating functions 3: We work on the definition of a function, domain, and finding function values graphically and algebraically. **Recall: Symmetry:** Do you remember which graph below is symmetric about the *y*-axis? Which is symmetric about the *x*-axis? Which is symmetric about the origin? #### Recall: Algebraic tests for symmetry: The pictures above help justify the following tests. To test a relationship for symmetry about the ... x-axis: Replace y with -y. If the equation is equivalent, then the relationship is symmetric with respect to the x-axis. y-axis: Replace x with -x. If the equation is equivalent, then the relationship is symmetric with respect to the y-axis. origin: Replace x with -x and replace y with -y. If the equation is equivalent, then the relationship is symmetric with respect to the origin. We are focusing on functions. Which above graph and symmetry could *not* be of a function? Cross it off because we will think of it no more. No more, I say! We have the following definitions. Definition: Even and Odd Functions: If a function is symmetric about the y-axis, we call it even. If a function is symmetric about the origin, we call it odd. We can frame the earlier algebraic test in terms of function notation. A function is even, if and only if for every x in the domain, we know f(-x) = f(x). A function is odd, if and only if for every x in the domain we know f(-x) = -f(x) We'll use this to check whether a function is even, odd, or neither. Could a function be both even and odd? 2 What does "if and only if" mean? expl 1: For the following functions, test if it is even, odd, or neither. So f(x) = x2+3x-4 is neither even nor odd. Here's an optional problem to stretch your mind. expl 2: Prove that the product of an odd function and an even function will always be odd. Let f(x) be an even function and g(x) be an odd function. We need to show $$(f \cdot g)(-x) = -(f \cdot g)(x)$$ $$OR$$ $$f(-x) \cdot g(-x) = -f(x) \cdot g(x)$$ Definition: Local (or relative) extrema: A **local minimum** is the point (technically, the y-value) on the graph where the y-value is the smallest, in that area of the graph. A local maximum is the point (technically, the y-value) on the graph where the y-value is the largest, in that area of the graph. expl 3: Use your calculator to find the local maximum and minimum of the function pictured above. Do *not* just TRACE but rather use the Maximum and Minimum calculator functions. (-4.02, 34.88) Wax $E-10_102 \times E-30_3 40_7$ Use the Minimum (or Maximum) function (under the CALC menu on the TI-83 or 84) to find the smallest (or largest) y-value and the x-value that makes it. for reference Worksheet: Finding maximums and minimums on your graphing calculator (82, 83, 85, 86): This worksheet shows how to find the points of maximum or minimum y-values on your graphing calculator. Instructions for the TI83 will work for TI84's. ## Local (Relative) Extrema: A more precise way to state this definition; Suppose f is a function for which f(c) exists for some c in the domain of f. Then f(c) is a local (or relative) minimum if there exists an open interval I containing c such that $f(c) \le f(x)$ for all x in I; or f(c) is a local (or relative) maximum if there exists an open interval I containing c such that $f(c) \ge f(x)$ for all x in I. ### Absolute Extrema (Minimums and Maximums): The concept of local maxes and mins focuses on a small interval around a given point. Consider the definition here and how it differs. ### **Definition: Absolute Maximums and Minimums:** Let f be some function defined on the interval I (meaning I is the whole domain of f). If there is a number u in I for which $f(u) \ge f(x)$ for all x in I, then f has an absolute maximum at u, and the number f(u) is the absolute maximum of f on I. If there is a number v in I for which $f(v) \le f(x)$ for all x in I, then f has an absolute minimum at v, and the number f(v) is the **absolute minimum** of f on I. This max or min has to the smallest or largest on the whole graph, not just an interval surrounding it. Again, it is the y-value that is said to be the max or min. Think back to this graph. What are the absolute maximum and minimum? Do they even exist? They do not exist expl 4: For each function below, determine the absolute maximum and absolute minimum if they exist. If an extremum does *not* exist, explain why. ## Increasing and decreasing functions: We will investigate where the graph's y-values are increasing and where they are decreasing. We look at what is happening to the y-values as we go left to right on the graph. And then we write the intervals of x-values that result in those increasing or decreasing parts of the graph. We will usually use interval notation. expl 5: Where is this function increasing and decreasing? Write your answers in interval notation. ### A more precise way to state this definition: A function is increasing on an interval I, if for any choice of x_1 and x_2 in that interval where $x_1 < x_2$, then $f(x_1) < f(x_2)$. A function is **decreasing** on an interval I, if for any choice of x_1 and x_2 in that interval where $x_1 < x_2$, then $f(x_1) > f(x_2)$. A function is **constant** on an interval I, if for all values of x in I, then the values of f(x) are equal. Some books will define these intervals to be strictly open. This book does *not*. Think left to right. expl 6: For each function below, determine the intervals where the function is increasing, decreasing, or constant. Write your answers in interval notation using square brackets. Inc: [-4, 4], [15, ∞) dec: (-∞, -4], [4, 15] Inc: [F, o] dec: [2,3] CNST: [0,2] # 3,3 ## Holes in graphs: expl 7: Consider this amended graph from a previous problem. Notice the hole at the top of the parabola. Here, the (approximated) point at the top (150, 80) is no longer considered a maximum. Do you see why? Write the intervals where this graph is increasing or decreasing. > We should not include 80 so use half-open intervals. Average Rate of change: You might recall that the slope of a straight line is the difference of the y-values divided by the difference of the x-values. This ratio tells us how fast y is changing with respect to x, or the average rate of change. What if we used this to investigate a non-linear function? We can select two points on the graph and find the slope of the line between them (called the secant line). We will amend our formula for slope a bit, using function notation. ## Definition: Average rate of change: If a and b where $a \neq b$ are in the domain of f(x), then the average rate of change of f from a to b is b.) Do your best to plot the points we are talking about above. Draw the secant line whose slope \$ 16,066,000,000,000 Do you remember what it means graphically for a slope to be positive or negative? expl 9: The US government's debt is a function of time that is increasing. In 2012, it was \$16,066 billion In 2018, it had grown to \$21,516 billion. Find the average rate of change for these years. Describe, in words, what this average tells us about how much the debt grows each _O debt is in billions year. (time, debt) & dollars (2012, 16,066) Can you write \$16,066 billion as a plain number? (2018, 21,5/6) augrate of change = f(b)-f(a) = 21,516-16,066 = 908 So, any rate of change is \$ 908 billion. So, for every year the debt grows by an average of \$ 908 billion.