We will see these rational

functions in real-life scenarios.
College algebra; 5 O
Class notes

Applications of Rational Functions (section 5.6)

We have learned about the vertical and horizontal asymptotes of rational functions. What
meaning can we give them in real-life scenarios?
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expl 1: The population P, in thousands, of a senior community is given by P(1) = — where

\ > '
t is the time in months. PlE) = poe wiashon W . [Co0%
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a.) Find the horizontal asymptote of the graph and complete the statement
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b.) Explain the meaning of the answer to part a.
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c¢.) Graph the function on the window [0,‘%?] x [0, 100]. Be Sure t’6) put the entire bottom in
parentheses. )
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d.) Determine the time, to the nearest month, when the population is at its maximum.
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expl 2: This rectangular corral alongside a highway must _
be fenced to have an area of 1500 square meters. We will A 4
not lay fencmg along the highway side. Let x “and y be
defined as in the picture. There will be four corner posts R el ot f‘

which cost $60 each. The fencing along the long side 1500 m?
(labeled length) will cost $25 per linear meter. The fencing 1 .
along the two widths will cost $15 per linear metel et
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a.) Find the cost of this corral as a function of x, the width length y=1500/x

of the corral. T -g}éw!‘ forier PDS o = é}_ * 60 =$ 240
( 2 wddhs st = Z-x-|5 = 30y (dollars)
&Q leuﬁm et = yo25= Js2g5. 53509k (dolar)

= 240 + 30x + B¥5an

b.) Graph youl fﬁnctlon Use a large enough window so that you carf see a finimum. Then find

this minimum and interpret it.

If you cannot find a good window,
use the Value function under CALC
to see what y is for a reasonable
value of x like 50. Then change
your Ymax accordingly.

L= 240 + 30x + 37STRY,
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expl 3: Pictured to the right is @:ﬁ: we have been asked
to make. We need a total volume of 12,000 cubic inches. Notice
the end faces are squares (x by x inches) with the length along
the third dimension labeled as y.
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a.) Express the surface area (all six faces) as a function of x. Follow these steps.

i.) Define a volume (V) formula using x and y. Set V' equal to 12,000 and solve for y.
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ii.) Define a surface area (SA) formula using x and y. Substitute your expression for y

and end up with a surface area formula in just x. —-(-\qm Are 2 Ends
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b.) Graph this surface area function and find its minimum. \(ﬁfﬂb‘ M’)

i.) What is the least amount of cardboard
that can be used to make this box? ( SPD

We wewld heed a minipmum
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(22.89,3144.89)
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ii.) What are the dimensions of the box with !
the least surface area? Lo, ?SJ X E o, gmﬂ
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