College algebra Class notes

000

We'll use this new name for the *inverse* of the exponential function.

Logarithmic Functions and Their Graphs (section 6.4)

Let's investigate the inverse of the exponential function from the previous section. I have recreated the table of values and graphed the exponential function $y = 2^x$ below.

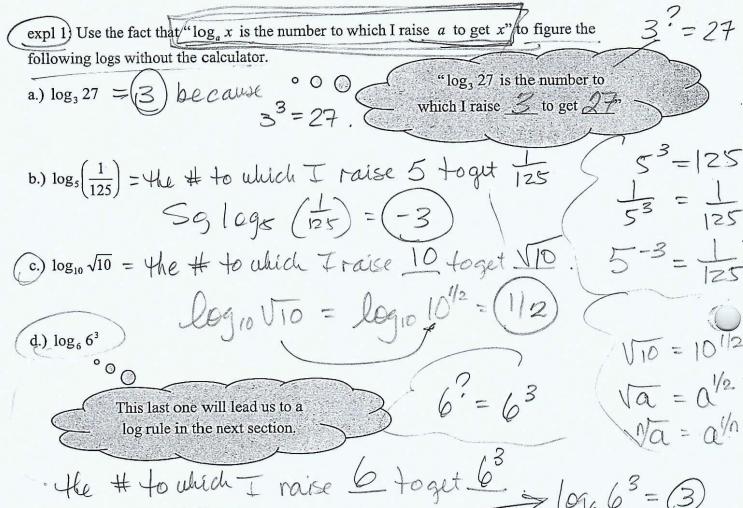
Then I switched the x and y values in the equation and table. I graphed the resulting inverse

relation using the points from the table. Is this inverse a function?

Exponential		Inverse																				
ĸ	$y=2^x$	x	y in	_1			1		1		4	I				\ĭ	1	1	1 1	1	1	1
			$x=2^y$					1					1			1						1
2	1/4	1/4	-2	14		+	1		\bot	Ш	1	_,y	= 2	.× -		1	4	+	Ш		_	1
1	1/2	1/2	-1		+	1	4		+	H	-	+	\vdash	H	-	1	+	+	Н	-	+	-
)	1	1	0	-	+	1	+		+	H	#	+	+	Н		/	+	+	H	+	+	1
1	2	2	1		1		1			П	#	1	T				\dagger	\top	\Box	\neg	十	
2	4	4	2		1						П				1							Ī
3	8	8	3	-	4	+	-		+		\vdash	+	_		4		+	1	\sqcup	_	-	1
1	16	16	4	A	+	+	+	+	+		+	+	-	/	\dashv	\dashv	+	+	H	\dashv	+	+
1			,		1	+	T	1	†		十	1/	1		7	+	7	.1	Н		-	$\downarrow \chi$
			/			L		-		I		X			200		1	1				1 $^{\times}$
		Y		4	+	+	1		Ι,		A	-	محد		4	4	in	ver	se.		_	-
	Tarth	2.1		-	+	+	+		+	/	2	4			+	+	丰	#	H	-	+	+
	Is the exp			1	+			1	*	11	+	f			+	+	10	~	Н	十	+	†
	function on	PER SECTION SECTION	- 1			4		1	Z		工					士				工		1/
×	If so, its inv		\mathcal{A}	7					4_		L	antiritio	L			Y		\supset			X	1
	be a fun	ction.		1	-	1	للا	4	1_	4			A11	lo	gar	rith	mic	S.			to to	
T							1	Y	(f	14 51 24	296 50000	1000	200	1000	ave	1	19			
							7		>			COLUMN	A 1989	A DUK	A CORDON	and the same	ipe.				\	
							1		7	distant.	-		ಕ್ಷ		aı	oma	ιρc.				-	

So, to find the equation for the inverse, we'd normally take the equation $x = 2^y$ and solve for y. But we do not know how to isolate y. So we'll invent new notation and write $y = \log_2 x$ to mean the same as $x = 2^y$. We need to be able to interpret this new log notation.

In words, how would you describe y in the equation $x = 2^y$? Use the right-side table above if you need. In other words, how is y related to 2 and x?


O(X=2") is exponent for the base of 2 That will make X

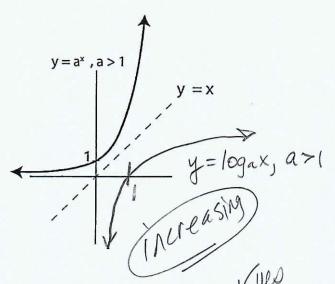
y is the exponent I raise 2 to, to get x.

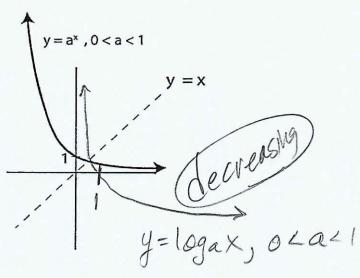
Meaning of Logarithms:

We will use the idea from the bottom of page 1 to define what $\log_2 x$ means. We will say that " $\log_2 x$ is the number to which I raise 2 to get x". This is very important in our study of logs.

Definition: Logarithmic Function:

We define $y = \log_a x$ to be the number y such that $x = a^y$. Because of its connection to the exponential relationship, we say x > 0 (this is the domain of the function) and a is a positive constant *not* equal to 1.


A more useful way to define logs, as stated above, is $\log_a x$ is the number to which I raise a to get x.


as $y = \log_a(x)$.

Sometimes written

The number a is called the base. Notice it is the same as the base of the exponential function from which it came.

Graphs: The graphs of logarithmic functions will come in two different flavors, just like exponential graphs. Below are the graphs of the basic exponential functions. Reflect them over the line y = x to get their logarithmic inverses.

Are these logarithmic functions one-to-one? What are their domains? What are their ranges?

What are their x and y-intercepts? Are they increasing or decreasing?

X-mt: X=1nog-mt

X70

all real numbers

The characteristics of transformed log functions will change accordingly. What's the domain of $y = \log_2(x-5)$?

Definition: Common Logarithmic Function:

If 10 is the base of the logarithm, we have $y = \log_{10} x$. We will call this the **common** logarithmic function. We can abbreviate " \log_{10} " as simply "log" with no base apparent.

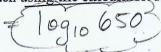
Definition: Natural Logarithmic Function:

If e is the base of the logarithm, we have $y = \log_e x$. We will call this the <u>natural logarithmic</u>

function. We can abbreviate "loge" as "ln"

natural y = exp. ful y = exp. ful y = exp.

y = ln (x)


3

Calculator usage:

You will see two buttons on your calculator, LN and LOG. These are base e and base 10 logs. To find logs of other bases, we will probably need a change-of-base formula discussed later.

expl 2: Find each using the calculator. Round to three decimal places.

a.) log 650

2,813

because

102.813=650

b.) In 80.56 = loge 80,56

FC 4,389

because o

4,389 = 80.51

 $(c.)\frac{\ln\frac{4}{3}}{0.06} - (4.795)$

Why does \log_{10} -20

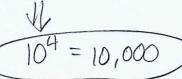
give you an error?

Change-of-Base Formula:

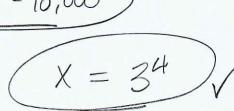
In the next section, we will see a formula that allows us to find logs of bases other than 10 or e on the calculator. Some newer calculators will do this inherently but older models will not.

Worksheet: Visiting with exponential and logarithmic functions:

This worksheet will explore the relationship between exponential functions and their inverses, logarithmic functions. We will also work on understanding what a logarithm means.


Convert between exponential equations and logarithmic equations:

We have the general notion that $y = \log_a x$ and $x = a^y$ are equivalent. That means, if we have an equation in exponential form, we should be able to convert it to logarithmic form using these equations as a guide, and vice versa.


You can also do this conversion by thinking about how " $\log_a x$ is the number to which I raise a to get x".

expl 3: Convert the logarithmic equation to the equivalent exponential equation.

a.) $\log_{10} 10,000 = 4$

(b.) $\log_3 x = 4$

Keep in mind

$$y = \log_a x \iff x = a^y$$

- c.) $\log_x y = 0.845$
- d.) $\ln 4 = x$

loge 4 = X

CEX = 4

This will help us solve equations later.

expl4: Convert the exponential equation to the equivalent logarithmic equation.

a.) $4^x = 64$

log464 = X log109764 = y

loge 403.4 26 Pln 403.4 26

Solving Some Logarithmic Equations:

We can use the equivalence of $y = \log_a x$ and $x = a^y$ to solve certain log equations as hinted at on the last page. Let's see this in action.

expl 5: Convert to exponential form and then solve the equations for x.

(a.)
$$\log_3 x = 4$$

 $34 = \chi$

The variable is buried within a log. Use the equivalence to unbury it.

(b.)
$$\log_3(2x+8)=4$$

$$\sqrt[4]{3^9} = 2x + 8$$

$$8| = 2x + 8$$

$$73 = 2x$$

$$X = 73/2$$
 $X = 36.5$

expl 6: To solve this one, notice the x is not within the log and so the above trick will not work. Rather than converting to exponential form, determine what $\log_4 4096$ is and then continue to

solve for x. $\log_4 4096 = 3x - 5$

$$6 = 3x - 5$$

$$11 = 3x$$

$$1/3 = \chi$$

N(a) = # 8, units so & ads a = 1000's of dollars speut on ads expl 7: A model for advertising response is given by $N(a) = 1000 + 200 \ln a$, $a \ge 1$ Here N(a)is the number of units sold when a thousand dollars is spent on advertising. a.) How many units would be sold if they spend \$5,000 on advertising? a = 5 N(5) =? What is a? N(a) = 1000 + 200 lua N(5) = 1000 + 200 - ln 5 = 1322 units sold b.) Graph the function on the window [0, 25] x [0, 2000]. What happens to the number of units sold as a increases? > N(a) As a mcreases, evelsout the # of units sold Mcreases and Then levels out. c.) The company would like to sell 1500 units. How much should be spent on advertising? Solve graphically. a = ? N(a) = 1500 $N(a) = 1000 + 200 \cdot lua$ Solve 1500= 1000 + 200. Ina y=1500 to sell 1500 y=1500 units, Hey ought to spend \$ 12,182 or ads. 7

*