College algebra o~
Class notes 00 @
Logarithmic Functions and Their Graphs (section 6.4)

Let’s investigate the inverse of the exponennal function from the previous section. I have

recreated the table of values and graphed the exponentlal functlon = 2* ‘below.

Then I switched the x and y values in the equatlon and table. I graphed the resulting inverse
relation using the points ffom the table. Is this inverse a function? (9
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But we do not know how to 1solate - So we'll invent new notatlon and wrlt"“

mean the same as x=2%. We need to be able to interpret this new log notatm
-:__-——____.-f—__i ———

In“wordw describe y in the equation x = 2*? Use the right-side table above if
you need. In other words, how is y related to 2 and x?
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Meaning of Logarithms:

We will use the idea from the bottom of page 1 to define what log, x means. We will say that _

“log, x is the number to which I raise 2 to get x”. This is very important in our study of logs.
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Definition: Looauthmm_li‘-unetmn...
We define y =log, x to be the number y such that x=a”’. Because of its connection to the

exponenhal relat1onsh1p, we say x> 0 (this is the domain of the funct1on) and a isa positive
mrf T

‘constant not equal to 1.

_ 4~ Amore useful way to define logs, as stated above,
N\ is log, x is the number to which Iraise a to get x.

The number a is called the base. Notice it is the same as the base of the exponential function

from which it came.



_ Graphs: The graphs of logarithmic functions will come in two different flavors, just like
./A\ exponential graphs. Below are the graphs of the basic exponential functions. Reflect them over
the line y =x to get their logarithmic inverses.
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Are these logarithmic functions one—‘/ ne? What are their domains? What are their ranges?
What are their x and y-mtercepts‘7 Are they increasing or fo;(creasmg?
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Definition: Common Logarithmic Function:

If 10 is the base of the logarithm, we have y= logm x. We will call this the common
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logarlthmlc_ function. We can abbreviate “Iogm as Su:nply “log” with no base apparent.
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Definition: Natural Logarithmic Function:

If e is the base of the logarithm, we have y =log, x. We will call this the natural logarithmic

) : 7.
(.‘__ ' function. We can abbreviate “loge™ as “In”.
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Calculator usage: ila
You will see two buttons on your ca@ LN and LOCH’ hese are base e and base 10 logs. w
To find logs of other bases, we will probably’ne”ﬁ a change -of-base formula discussed later.

Eind each using the calculator. Round to three decimal places.
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Change-of-Base Formula:
In the next section, we will see a formula that allows us to find logs of bases other t};g;l‘}lo or e

on the calculator. Some newer calculators will do this inherently but older models will not.
— e

Worksheet: Visiting wit ential-and logarithmic functions:
This worksheet will explore the relationship between exponential functions and their inverses,
logarithmic functions. We will also work on understanding what a logarithm means.



Convert between exponential equations and logarithmic equanons
m We have the general I’lOthIl\ that y=log, x and x=a” are equivalent. Fhat means, if we have

an equation in exponentlal form we should be able fo convert it fo logarithmic form using these
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équations as a guide, and vice I versa

Yot can also do this conversion by thinking about how “locr x is the number to Wthh Iraise a
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& P

@ Convert the exponentl-'l '\uEﬁoH%quwalent logarithmic equatlon{’“ :
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Solving Some Logarithmic Equations:
We can use the equivalence o

cfA
f y=log,x and x=a’ to sOlve certain log equations as hinted at
on the last page. Let’s see this in action. s

expl 5: Convert to exponential form and then solve the equations for x.
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To solve this one, notice the x is not within the log and so the above trick will not work.
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er than convertmg to exponentlal form, determmerwhat lo g 2 4096 is and then continue to

Solve for X e
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expl 7: A model for advertising response is given b;lﬁ’ (a)=1000+200Ina, a=1 ( Here ga!

m is the number of units sold when @ thousand dollars is spent on advertising.
R — =

@How many units would b d.if they spend $5,000 on advertising? ,
V() =7

N (@)= 1000 + 200 Lo
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raph the function on the wmdow [0 25] x [0, 2000]. What happens to the number of units
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he company would like to sell 1500 units. How much should be spent on advertising? Solve
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