

College algebra

Class notes

Properties of Logarithms (section 6.5)

Optional Worksheet: Logarithm Rules Worksheet

This worksheet will show you how to derive most of the formulas given in this section. If we can think through the formulas, they will be easier to memorize and apply. Try to use what you know about logs to figure out the following excerpt from the worksheet.

- 1. In words, what is $\log_b b$? It's the number to which I raise b to get b. What does this number we call $\log_b b$ have to be? $\log_b b = 1$
- 2. In words, what is $\log_b 1$? It's the number to which I raise _____ to get ____ What does this number we call $\log_b 1$ have to be? $\log_b 1 = 0$
- 3. In words, what is $\log_b b^k$? It's the number to which I raise _____ to get _____. leabb = K What does this number we call $\log_b b^k$ have to be?
- 4. Now $\log_b v$ is the number to which I raise b to get v. So, when we raise b to this number, what should I get? In other words, what is $b^{(\log_b \nu)}$?

The complete list of rules is listed below including the Change of Base Formula from the end of this section.

- 1. $\log_a(M/N) = \log_a M \log_a N$
- 2. $\log_a(M \cdot N) = \log_a M + \log_a N$
- $3. \quad \log_a M^r = r \cdot \log_a M$
- 4. $\log_{a} a = 1$
- 5. $\log_a 1 = 0$
- 6. $\log_a a^r = r$
- 7. $a^{\log_a M} = M$
 - 8 $a^r = e^{r \ln a}$
 - 9. $\log_a M = \frac{\log_b M}{\log_b a}$

Change of Base tormula

The worksheet will give you ways to think through most of these rules to make sense of them.

$$a_{\star}^{m}a^{n}=\alpha^{m+n}$$

Common Mistakes:

It is common to incorrectly assume other rules similar to those given. Be careful when you apply the rules. You should also try out numbers in any rule you "think" is right.

 $\frac{\log_a M}{\log N} \neq \log_a M - \log_a N$ $(\log_a M) * (\log_a N) \neq \log_a M + \log_a N$

Substitute values to check any rule.

 $\frac{\log_{10} 100}{\log_{10} 1000} \stackrel{?}{=} \log_{10} 100 - \log_{10} 1000$

 $\log_a MN \neq (\log_a M)(\log_a N)$ $(\log_a M)^p \neq p(\log_a M)$

etc...

For all examples, assume that variables are such that logs are defined. For instance, we cannot take the log of a negative number.

expl 1: Express as a sum of logs Simplify if possible

 $\log_4(64y)$

loga (M.N) = loga M + loga N

log4(644) = log464 + log4 4 = 3+ logyy

expl 2: Express as a sum or difference of logs. Express powers as factors. Simplify if possible.

 $\ln v^5$

> Rule 3: loga MO = r.logaM

expl 3: Use the properties of logarithms to find the exact value of this expression.

log₈ 2+log₈ 4 = log₈ (2.4) Rule 2

= 1098 8

a.)
$$t^{\log_t 3} = 3$$
Rule 7

expl 5: Express as a sum or difference of logs. Express powers as factors. Simplify if possible.

a.)
$$\log \frac{x^2y}{(x+1)} = \log(x^2y) - \log(x+1)$$
 Rule 1

Use

 $= \log x^2 + \log y - \log(x+1)$ Rule 2 $\log_a M^p = p \cdot \log_a M$ where applicable.

 $= 2 \cdot \log x + \log y - \log(x+1)$ Rule 3

b.)
$$\log_{5} \frac{(x+2)^{3}}{x^{4}} = 2\log_{5} (x+2)^{3} - 2\log_{5} x^{4}$$
 Rule 1

$$= 3 \cdot \log_{5} (x+2) - 4 \cdot \log_{5} x$$
 Rule 3

logam-logaN=loga (m/N)

expl 6: Express as a single log. Express powers as factors. Simplify if possible. a.) $\ln\left(\frac{x}{x-2}\right) - \ln\left(x^2 - 4\right) + \ln\left(\frac{x+2}{x}\right)$ What cancels? $= \ln\left(\frac{x}{x-2}\cdot (x^2-4)\right) + \ln\left(\frac{x+2}{x}\right)$ $= lu\left(\frac{x\cdot 1}{(x-2)(x^2-4)}\frac{(x+2)}{x}\right)$ 2 de 2 Do you remember the difference of two squares? = lu (x-2)(x-2)(x+2) = lu $(x-2)^2$ = lu $(x-2)^2$ = $(-2 \cdot \ln(x-2)) \times (x^2-4) = (x-2)$ b.) 3 $\ln(x-5) - \ln(x-5) + \ln(x+5)$ There are different ways this could be Pule 3 simplified. = lu (x-5)3- lu (x-5)(x+5) $= ln \left(\frac{(x-5)^3}{(x-5)(x+5)} \right)$

Change of Base Formula:

You cannot find logs other than base 10 or e on your calculator. We need another way. For any

logarithmic bases a and b, and any positive number M,

we know that
$$\log_b M = \frac{\log_a M}{\log_a b}$$
.

Some newer calculators will calculate logs of any base. Look under the

MATH menu for

"logBASE"

[We will usually use 10 or e for the base a so we can do these problems on the calculator.]

expl 7: Use the Change of Base Formula and your calculator to find the following.

log₃ 12

Do you know the number we raise 3 to, to get 12? If not, use the formula!

> You can use log base 10 or e. Try both to see!

expl 8: Use the Change of Base Formula to rewrite the following and then evaluate without a

calculator. log, 5 Aog, 81

expl 9: Graph on a calculator using the Change of Base Formula. Use a window of

 $[-2, 5] \times [-3, 3].$

This question will be multiple choice.

5

x=16	
Solving Special Logarithmic Equations:	- 1783
What would you say the solution to $\log_2(x = \log_2(16))$ is? Go with your gut. There is actually a	
pretty simple property that backs up what your gut probably told you.	
Logarithmic Equality Property: For any $M > 0$, $N > 0$, $a > 0$, and $a \ne 1$, we know that	
$M = N$ if and only if $\log_a M = \log_a N$.	
Do you remember	
what "if and only	
if" means?	
expl 10: Express y as a function of x . The constant C is a positive number.	
$\log y = 2 \cdot \log x - \log C$ Recall a missing	
$-0.08 \times 2 - 0.01 \times 0.00$	
$= \log_{10} X^2 - \log_{10} C$	
A_{n} X_{n}	
gray = logra (X2) 2 Log Equal Prop.	
12	
$u = \frac{x}{x}$	
d c	
expl 11: It is easy to remember these rules incorrectly. We may need to check our memory.	
Substitute values for the variables to verify that the following "rule" is true. Use a base of 10 or	
e so you can use your calculator to evaluate the logs.	
$\frac{\log_a M}{\log_a M} \log_a M - \log_a N$	
$\log_a N^2$	
Dean 20 \ ()	
= log 10 20 - log 10 3	
100.3	

Cale.