College Algebra
Class Notes

Functions (section 3.1) ${ }^{\circ}$

Idea behind Functions:

Equations like $y=4 x+5$ or $x^{2}+y^{2}=16$ show relationships between variables. These are called relations. They can also be represented by a table of values, a list of ordered pairs, or a graph which is just a picture of those ordered pairs. A function is a special kind of relation. Let's review some terminology to help us understand how they are special.

Definition: Domain: the set of all x values (that will give you a real number out for y)
Definition: Range: the set of all y values (that you can get out for y) Range values are sometimes called images.

But do you remember what a real number is? What would cause the output to be non-real?
expl 1: Consider the sets of ordered pairs and their illustrations below. Determine the domains and ranges of these relations.
a.) $(4,1),(5,2),(6,3)$, and $(7,4)$

What is the domain? What is the range? Write your answers in set notation.
b.) $(4,1),(4,2),(5,8)$, and $(6,9)$

What is the domain? What is the range? Write your answers in set notation.

Definition: Function: a relation where every x value in the domain is assigned to exactly one y value. (If y is isolated in the equation, we call it explicitly defined. If y is not isolated, the function is said to be given implicitly.)

In example 1 above, which relation is a function and which is not? Explain.

Definition: Dependent and Independent Variables: Since we think of most functions in the form of " $y=$ some rule involving x ", we think of the x values as inputs and the y values as outputs. Also, we may say that the value of y depends on the value of x. Hence, we will refer to x as the independent variable and to y as the dependent variable.
expl 2: Which of the following relations are functions?

Interpretation: You can think of a function in a few different ways.

1. a relationship between two variables, x and y,
2. a rule that tells you what to do to an x value to get out a y value, or
3. a machine that produces a y value when you input an x value.

In certain applications, one understanding of function may serve us better than the others.

Relationship: Every y value is equal to the x value squared, multiplied by 2 , and added to 4.

Rule: This $y=2 x^{2}+4$ tells us what to do to an x value to make a y value. Can you picture a machine doing these operations?

Function notation:

Check to see if the following relationships are functions.

$y=2 x^{2}+4$		$y^{2}=x \quad($ solved as $y= \pm \sqrt{x})$	
x	$y=2 x^{2}+4$	x	$y= \pm \sqrt{x}$
-3		9	
0		16	
3			
Is y a function of $x ?$			

Since the first relationship is a function, we can use function notation to make sure everyone knows. So we replace the y with $f(x)$ to write $f(x)=2 x^{2}+4$. Sometimes we use different letters like $g(x)$ or $h(x)$, especially if we have more than one function.

expl 3a: Find $f(0), f(-2)$, and $f(5)$ for the function $f(x)=2 x^{2}+4$.

What we want are the y
values when x is $0,-2$, and 5 .

Common Mistakes with Notation: As we use function notation in more complicated ways, understanding the notation and using it correctly will be crucial. For instance, in the previous example, we must never write $f(x)=54$ or $f(5)=2 x^{2}+4$. Whatever you write in the parentheses should be substituted for x in the formula at the same time, on the same line.
expl 3b: Recall that the numbers $0,-2$, and 5 are x values and the $f(x)$ outputs are their corresponding y values. Write your results from part a in ordered pair notation.
expl 3c: Consider our function $f(x)=2 x^{2}+4$. Find $f(-x), f(x+3)$ and $f(x+h)$.

expl 4: Forensic science uses the function $H(x)=2.59 x+47.24$ to estimate the height $H(x)$ of a woman (in centimeters) given the length x (in centimeters) of her femur bone.
a.) Estimate the height of a woman whose femur bone measured 40 cm . Round your answer to two decimal places.

b.) I am 5' $5^{\prime \prime}$ (or 165.1 centimeters). How long would you expect my femur to be? Round your answer to two decimal places.

Review of Interval Notation:

Do you remember interval notation? Provide each real number line graph and interval notation for these sets of numbers. The real number line graphs help me to visualize the sets.

expl 5: Find the domains of the functions below. Use interval notation.
a.) $y=\frac{3}{x+4}$
b.) $h(x)=\sqrt{2 x+6}$
c.) $y=5 x+9$

Operations on functions:

We'll learn how to add, subtract, multiply, and divide two functions. This next example gives us a good reason.
expl 6: A company knows that the revenue $R(x)$, in dollars, from selling x hundred laptops is $R(x)=-1.2 x^{2}+220 x$. The cost of making and selling x hundred laptops is $C(x)=0.05 x^{3}-2 x^{2}+65 x+500$.
a.) Find the profit $P(x)$ for this company where $P(x)=R(x)-C(x)$.
b.) Find the interpret $P(25)$.

Notation: The following notation is often used.

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=f+g \\
& (f-g)(x)=f(x)-g(x)=f-g \\
& (f \cdot g)(x)=f(x) \cdot g(x)=f \cdot g=f g \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{f}{g}, \quad g(x) \neq 0
\end{aligned}
$$

Domains: all real numbers in both domains of f and g and, in the case of $(f / g)(x)$, exclude those numbers that make $g(x)=0$.

expl 7: Let $f(x)=2 x^{2}+7 x$ and $g(x)=3 x-5$. Find the following and their domains.
a.) $f+g$
b.) f / g

The domain is the set of numbers in both domains of f and g.

For the quotient, we exclude those x 's that would cause division by zero.
e xivis by zero.
expl 8: Let $f(x)=\sqrt{x}$ and $g(x)=3 x-5$. Find the following if they exist.
a.) $(f \cdot g)(9)$
b.) $(f / g)(5 / 3)$

Difference Quotient: For a function $f(x)$, we can define two points on the graph shown below. We find the slope of the secant line through the points and we end up at the difference quotient. (Notice that h would be assumed to be non-zero. Do you see why?)

It's nice to know where it comes from, but in practice you just need to know how to use it. Use the circled formula above when asked to find the difference quotient for a function.
expl 9: Find the difference quotient for the following function. $f(x)=3 x^{2}-5$

