College Algebra
Class Notes

Graphs of Functions (section 3.2)
Recall a function is a special relationship where there is exactly one y value for each x value in the domain. So, how would this look graphically?

This procedure leads us to an important tool.
Vertical Line Test: Given a graph, the vertical line test will tell you if it is a function. If any vertical line could be drawn so that it crosses the graph more than once, then it is not a function. (The vertical line represents a single x value. If this vertical line hits the graph more than once, that x value has more than one y value and so the relation is not a function.)
expl 1: Use the vertical line test to determine if the following are functions.

Obtaining Information from the Graph of a Function:

expl 2: Use the graph of the function $f(x)$ to the right. Find the following values. Estimate if needed.
a.) $f(-1)$
b.) $f(0)$
c.) Find x such that $f(x)=0$.

Which x values give you points on the graph? Which y values are represented?
Finding domain and range:
expl 3: Find the domains and ranges for the various functions. Use interval notation.
a.)

b.)

expl 4: Use the graphs to the right.
a.) Find the domain of g.
b.) Find the domain of f.
c.) Find the domain of $f+g$.
d.) Find the domain of f / g.
e.) Find $(f+g)(4)$.
f.) Find $(g-f)(6)$.

expl 5: Consider the function $f(x)=2 x^{2}+6 x+7$. If $f(x)=3$, then what is x ? What point(s) are on the graph of $f(x)$? Use ordered pair notation.

