when a function is going up or down, extreme values, and how fast a function is changing.

We will revisit the concept of symmetry and explore concepts such as the largest or smallest y value on a graph. The concepts are intuitive but we will use algebra to describe them.

Worksheet: Investigating functions 3:

We work on the definition of a function, domain, and finding function values graphically and algebraically.

Recall: Symmetry: Do you remember which graph below is symmetric about the y-axis? Which is symmetric about the x-axis? Which is symmetric about the origin?

Recall: Algebraic tests for symmetry:

The pictures above help justify the following tests.
To test a relationship for symmetry about the ...
x-axis: Replace y with $-y$. If the equation is equivalent, then the relationship is symmetric with respect to the x-axis.
\boldsymbol{y}-axis: Replace x with $-x$. If the equation is equivalent, then the relationship is symmetric with respect to the y-axis.
origin: Replace x with $-x$ and replace y with $-y$. If the equation is equivalent, then the relationship is symmetric with respect to the origin.

We have the following definitions.

Definition: Even and Odd Functions:

If a function is symmetric about the y-axis, we call it even. If a function is symmetric about the origin, we call it odd.

We can frame the earlier algebraic test in terms of function notation.
A function is even, if and only if for every x in the domain, we know $f(-x)=f(x)$.
A function is odd, if and only if for every x in the domain, we know $f(-x)=-f(x)$.

We'll use this to check whether a function is even, odd, or neither.
Could a function be both even and odd?

expl 1: For the following functions, test if it is even, odd, or neither.
a.) $f(x)=x^{3}+x$

b.) $f(x)=3 x^{2}-5 x^{4}$
c.) $f(x)=x^{2}+3 x-4$

Here's an optional problem to stretch your mind.
expl 2: Prove that the product of an odd function and an even function will always be odd.

Definition: Local (or relative) extrema:
A local minimum is the point (technically, the y-value) on the graph where the y-value is the smallest, in that area of the graph.

A local maximum is the point (technically, the y-value) on the graph where the y-value is the largest, in that area of the graph.

expl 3: Use your calculator to find the local maximum and minimum of the function pictured above. Do not just TRACE but rather use the Maximum and Minimum calculator functions.

Worksheet: Finding maximums and minimums on your graphing calculator (82, 83, 85, 86):

This worksheet shows how to find the points of maximum or minimum y-values on your graphing calculator. Instructions for the TI83 will work for TI84's.

Local (Relative) Extrema: A more precise way to state this definition:

Suppose f is a function for which $f(c)$ exists for some c in the domain of f. Then
$f(c)$ is a local (or relative) minimum if there exists an open interval I containing c such that $f(c) \leq f(x)$ for all x in I; or $f(c)$ is a local (or relative) maximum if there exists an open interval I containing c such that $f(c) \geq f(x)$ for all x in I.

Absolute Extrema (Minimums and Maximums):

The concept of local maxes and mins focuses on a small interval around a given point. Consider the definition here and how it differs.

Definition: Absolute Maximums and Minimums:

Let f be some function defined on the interval I (meaning I is the whole domain of f).
If there is a number u in I for which $f(u) \geq f(x)$ for all x in I, then f has an absolute maximum at u, and the number $f(u)$ is the absolute maximum of f on I. If there is a number v in I for which $f(v) \leq f(x)$ for all x in I, then f has an absolute minimum at v, and the number $f(v)$ is the absolute minimum of f on I.

Think back to this graph. What are the absolute maximum and minimum? Do they even exist?

expl 4: For each function below, determine the absolute maximum and absolute minimum if they exist. If an extremum does not exist, explain why.
a.)

b.)

c.)

Increasing and decreasing functions:

We will investigate where the graph's y-values are increasing and where they are decreasing.
We look at what is happening to the \boldsymbol{y}-values as we go left to right on the graph. And then we write the intervals of \boldsymbol{x}-values that result in those increasing or decreasing parts of the graph. We will usually use interval notation.
expl 5: Where is this function increasing and decreasing? Write your answers in interval notation.

A more precise way to state this definition:

A function is increasing on an interval I, if for any choice of x_{1} and x_{2} in that interval where $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$.

A function is decreasing on an interval I, if for any choice of x_{1} and x_{2} in that interval where $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.

A function is constant on an interval I, if for all values of x in I, then the values of $f(x)$ are equal.

expl 6: For each function below, determine the intervals where the function is increasing, decreasing, or constant. Write your answers in interval notation using square brackets.

Holes in graphs:

expl 7: Consider this amended graph from a previous problem. Notice the hole at the top of the parabola.

Here, the (approximated) point at the top $(150,80)$ is no longer considered a maximum. Do you see why?

Write the intervals where this graph is increasing or decreasing.

Average Rate of change:

You might recall that the slope of a straight line is the difference of the y-values divided by the difference of the x-values. This ratio tells us how fast y is changing with respect to x, or the average rate of change.

What if we used this to investigate a non-linear function? We can select two points on the graph and find the slope of the line between them (called the secant line). We will amend our formula for slope a bit, using function notation.

Definition: Average rate of change:

If a and b where $a \neq b$ are in the domain of $f(x)$, then the average rate of change of f from a to b is $\frac{\Delta y}{\Delta x}=\frac{f(b)-f(a)}{b-a}, \quad a \neq b$.
expl 8a: For the function pictured to the right, find the average rate of change from 1 to 4 .

b.) Do your best to plot the points we are talking about above. Draw the secant line whose slope you have just found.

expl 9: The US government's debt is a function of time that is increasing. In 2012, it was $\$ 16,066$ billion. In 2018, it had grown to $\$ 21,516$ billion. Find the average rate of change for these years. Describe, in words, what this average tells us about how much the debt grows each year.

