College algebra -

Section 3.4

Library of Functions:

Draw from memory or use your calculator (on the Standard window) to graph the following functions. You should acquaint yourself with their basic shapes.

Identity function $y=x$	Square function $y=x^{2}$	Square root function $y=\sqrt{x}$
Cube function $y=x^{3}$	Cube root function $y=\sqrt[3]{x}$	Constant function $y=b, b$ is a real number
Absolute value function $y=\|x\|$	Reciprocal function 1	Greatest integer function $y=i n t(x)=$ greatest integer less than or equal to x

Where are these functions increasing, decreasing, constant? Where are their (x and y) intercepts? Later, we will study how to transform these graphs by shifting, reflecting, stretching, and shrinking (also called compressing or squashing) the graphs.

Properties of Base Functions:

For each of the functions above, we will investigate several questions. Consult the information below. (I abbreviated increasing/decreasing/constant as inc/dec/cnst.)

Identity function $y=x$ domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$ x-intercept(s): $x=0$ y-intercept: $y=0$ even or odd?: odd inc/dec/cnst?: inc: $(-\infty, \infty)$ mins/maxes: none	Square function $y=x^{2}$ domain: $(-\infty, \infty)$ range: $[0, \infty)$ x-intercept(s): $x=0$ y-intercept: $y=0$ even or odd?: even inc/dec/cnst?: dec: $(-\infty, 0]$ inc: $[0, \infty)$ mins/maxes: abs. min. of $y=0 \text { at } x=0$	Square root function $y=\sqrt{x}$ domain: $[0, \infty)$ range: $[0, \infty)$ x-intercept(s): $x=0$ y-intercept: $y=0$ even or odd?: neither inc/dec/cnst?: inc: $[0, \infty)$ mins/maxes: abs. min. of $y=0 \text { at } x=0$
Cube function $y=x^{3}$ domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$ x-intercept(s): $x=0$ y-intercept: $y=0$ even or odd?: odd inc/dec/cnst?: inc: $(-\infty, \infty)$ mins/maxes: none	Cube root function $y=\sqrt[3]{x}$ domain: $(-\infty, \infty)$ range: $(-\infty, \infty)$ x-intercept(s): $x=0$ y-intercept: $y=0$ even or odd?: odd inc/dec/cnst?: inc: $(-\infty, \infty)$ mins/maxes: none	```Constant function \(y=b, b\) is a real number domain: \((-\infty, \infty)\) range: \(\{b\}\) \(x\)-intercept(s): none unless \(b=0\) \(y\)-intercept: \(y=b\) even or odd?: even inc/dec/cnst?: cnst: \((-\infty, \infty)\)``` mins/maxes: abs. min. and abs. max. of $y=b$ for all x
Absolute value function $y=\|x\|$ domain: $(-\infty, \infty)$ range: $[0, \infty)$ x-intercept(s): $x=0$ y-intercept: $y=0$ even or odd?: even inc/dec/cnst?: dec: $(-\infty, 0]$ inc: $[0, \infty)$ mins/maxes: abs. min. of $y=0 \text { at } x=0$	Reciprocal function $y=\frac{1}{x}$ domain: $(-\infty, 0) \cup(0, \infty)$ range: $(-\infty, 0) \cup(0, \infty)$ x-intercept(s): none y-intercept: none even or odd?: odd inc/dec/cnst?: dec: $(-\infty, 0) \cup(0, \infty)$ mins/maxes: none	Greatest integer function $y=\operatorname{int}(x)=$ greatest integer less than or equal to x domain: $(-\infty, \infty)$ range: $\{y \mid y$ is an integer $\}$ x-intercept(s): $0 \leq x<1$ y-intercept: $y=0$ even or odd?: neither inc/dec/cnst?: cnst: every interval of the form $[k, k+1)$ for k an integer mins/maxes: none

expl 1: For the function $f(x)=\operatorname{int}(3 x)$, find the following.
a.) $f(2.3)$
b.) $f(2)$
expl 2: For the function $f(x)=\frac{1}{x}$, find the following.
a.) $f(5)$
b.) $f(0)$
expl 3: For the function $f(x)=5$, find the following.
a.) $f(2.3)$
b.) $f(2)$

Piecewise Functions:

The following is an example of a piecewise function. The idea here is that the function's rule changes depending on which piece of the domain you're in.

First, verify that this is, indeed, a function.
What is the domain of this function?

Break up this graph into its three pieces and determine the x-values (domains) for those pieces.

The rule for this function has to come in three pieces, just as its graph does. Its formula is

expl 4: For the piecewise function, find the function values $g(-10), g(-15)$, and $g(20)$.

$$
g(x)= \begin{cases}x+5, & x<-10 \\ 3 x-6, & -10 \leq x \leq 0 \\ 7, & x>0\end{cases}
$$

expl 5a: Determine the domain and range of the piecewise function pictured here.
expl 5b: Find $f(10)$.

expl 6: For the function below to the right, complete the following.
a.) Find the domain.
b.) Locate the intercepts.
c.) Graph the function.
d.) Find the range based on the graph.

Worksheet: Piecewise Functions:

We will practice using and graphing piecewise functions.

