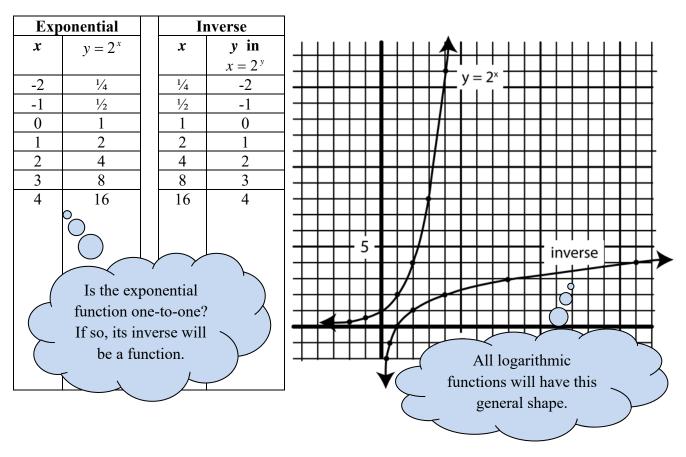
College algebra Class notes Logarithmic Functions and Their Graphs (section 6.4) We'll use this new name for the *inverse* of the exponential function.

Let's investigate the inverse of the exponential function from the previous section. I have recreated the table of values and graphed the exponential function $y = 2^x$ below.

Then I switched the x and y values in the equation and table. I graphed the resulting inverse relation using the points from the table. Is this inverse a function?



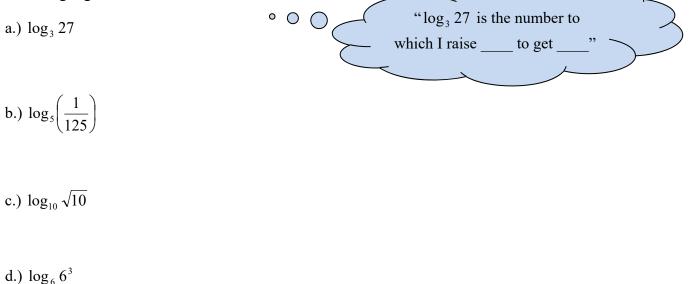
So, to find the equation for the inverse, we'd normally take the equation $x = 2^y$ and solve for y. But we do *not* know how to isolate y. So we'll invent new notation and write $y = \log_2 x$ to mean the same as $x = 2^y$. We need to be able to interpret this new log notation.

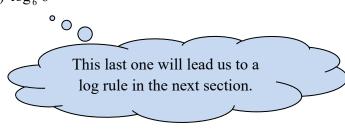
In words, how would you describe y in the equation $x = 2^{y}$? Use the right-side table above if you need. In other words, how is y related to 2 and x?

Meaning of Logarithms:

We will use the idea from the bottom of page 1 to define what $\log_2 x$ means. We will say that " $\log_2 x$ is the number to which I raise 2 to get x". This is very important in our study of logs.

expl 1: Use the fact that " $\log_a x$ is the number to which I raise *a* to get *x*" to figure the following logs without the calculator.

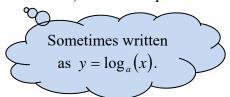




Definition: Logarithmic Function:

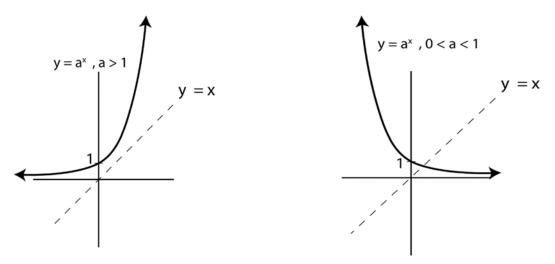
We define $y = \log_a x$ to be the number y such that $x = a^y$. Because of its connection to the exponential relationship, we say x > 0 (this is the domain of the function) and a is a positive constant *not* equal to 1.

A more useful way to define logs, as stated above, is $\log_a x$ is the number to which I raise *a* to get *x*.

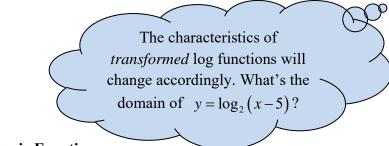


The number a is called the **base**. Notice it is the same as the base of the exponential function from which it came.

Graphs: The graphs of logarithmic functions will come in two different flavors, just like exponential graphs. Below are the graphs of the basic exponential functions. Reflect them over the line y = x to get their logarithmic inverses.



Are these logarithmic functions one-to-one? What are their domains? What are their ranges? What are their x and y-intercepts? Are they increasing or decreasing?



Definition: Common Logarithmic Function:

If 10 is the base of the logarithm, we have $y = \log_{10} x$. We will call this the **common** logarithmic function. We can abbreviate " \log_{10} " as simply "log" with no base apparent.

Definition: Natural Logarithmic Function:

If *e* is the base of the logarithm, we have $y = \log_e x$. We will call this the **natural logarithmic** function. We can abbreviate "log_e" as "ln".

Calculator usage:

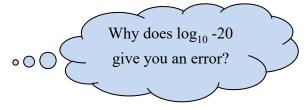
You will see two buttons on your calculator, LN and LOG. These are base e and base 10 logs. To find logs of other bases, we will probably need a change-of-base formula discussed later.

expl 2: Find each using the calculator. Round to three decimal places. a.) log 650

b.) ln 80.56

c.) $\frac{\ln \frac{4}{3}}{0.06}$

```
d.) log<sub>10</sub> -20
```



Change-of-Base Formula:

In the next section, we will see a formula that allows us to find logs of bases other than 10 or e on the calculator. Some newer calculators will do this inherently but older models will *not*.

Worksheet: Visiting with exponential and logarithmic functions:

This worksheet will explore the relationship between exponential functions and their inverses, logarithmic functions. We will also work on understanding what a logarithm means.

Convert between exponential equations and logarithmic equations:

We have the general notion that $y = \log_a x$ and $x = a^y$ are equivalent. That means, if we have an equation in exponential form, we should be able to convert it to logarithmic form using these equations as a guide, and vice versa.

You can also do this conversion by thinking about how " $\log_a x$ is the number to which I raise *a* to get *x*".

° ()

expl 3: Convert the logarithmic equation to the equivalent exponential equation.

a.) $\log_{10} 10,000 = 4$

\bigcirc		
	Keep in mind	\sum
\sim	$y = \log_a x \iff x = a^y$	

b.) $\log_3 x = 4$

c.) $\log_x y = 0.845$

d.) $\ln 4 = x$

°0		
6	This will help)
\succ	us solve equations later.	\mathcal{Y}
~		

expl 4: Convert the exponential equation to the equivalent logarithmic equation. a.) $4^x = 64$

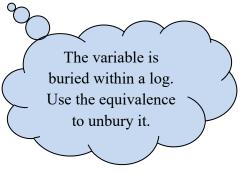
b.) $10^{y} = 9764$

c.) $e^6 \approx 403.4$

Solving Some Logarithmic Equations:

We can use the equivalence of $y = \log_a x$ and $x = a^y$ to solve certain log equations as hinted at on the last page. Let's see this in action.

expl 5: Convert to exponential form and then solve the equations for *x*. a.) $\log_3 x = 4$



b.) $\log_3(2x+8) = 4$

expl 6: To solve this one, notice the x is *not* within the log and so the above trick will *not* work. Rather than converting to exponential form, determine what $\log_4 4096$ is and then continue to solve for x. $\log_4 4096 = 3x - 5$ expl 7: A model for advertising response is given by $N(a) = 1000 + 200 \ln a$, $a \ge 1$. Here N(a) is the number of units sold when *a* thousand dollars is spent on advertising.

a.) How many units would be sold if they spend \$5,000 on advertising? $\, \cdot \, \circ \, _{\bigcirc}$

b.) Graph the function on the window $[0, 25] \times [0, 2000]$. What happens to the number of units sold as *a* increases?

c.) The company would like to sell 1500 units. How much should be spent on advertising? Solve graphically.