College algebra
Class notes
Logarithmic Functions and Their Graphs (section 6.4)
We'll use this new name for the inverse of the exponential function.

Let's investigate the inverse of the exponential function from the previous section. I have recreated the table of values and graphed the exponential function $y=2^{x}$ below.

Then I switched the x and y values in the equation and table. I graphed the resulting inverse relation using the points from the table. Is this inverse a function?

So, to find the equation for the inverse, we'd normally take the equation $x=2^{y}$ and solve for y. But we do not know how to isolate y. So we'll invent new notation and write $y=\log _{2} x$ to mean the same as $x=2^{y}$. We need to be able to interpret this new log notation.

In words, how would you describe y in the equation $x=2^{y}$? Use the right-side table above if you need. In other words, how is y related to 2 and x ?

Meaning of Logarithms:

We will use the idea from the bottom of page 1 to define what $\log _{2} x$ means. We will say that " $\log _{2} x$ is the number to which I raise 2 to get $x "$. This is very important in our study of logs.
expl 1: Use the fact that " $\log _{a} x$ is the number to which I raise a to get x " to figure the following logs without the calculator.
a.) $\log _{3} 27$
-

b.) $\log _{5}\left(\frac{1}{125}\right)$
c.) $\log _{10} \sqrt{10}$
d.) $\log _{6} 6^{3}$

Definition: Logarithmic Function:

We define $y=\log _{a} x$ to be the number y such that $x=a^{y}$. Because of its connection to the exponential relationship, we say $x>0$ (this is the domain of the function) and a is a positive constant not equal to 1 .

A more useful way to define logs, as stated above, is $\log _{a} x$ is the number to which I raise a to get x.

The number a is called the base. Notice it is the same as the base of the exponential function from which it came.

Graphs: The graphs of logarithmic functions will come in two different flavors, just like exponential graphs. Below are the graphs of the basic exponential functions. Reflect them over the line $y=x$ to get their logarithmic inverses.

Are these logarithmic functions one-to-one? What are their domains? What are their ranges? What are their x and y-intercepts? Are they increasing or decreasing?

Definition: Common Logarithmic Function:

If 10 is the base of the logarithm, we have $y=\log _{10} x$. We will call this the common
logarithmic function. We can abbreviate " $\log _{10}$ " as simply "log" with no base apparent.

Definition: Natural Logarithmic Function:

If e is the base of the logarithm, we have $y=\log _{e} x$. We will call this the natural logarithmic function. We can abbreviate " $\log _{e}$ " as "In".

Calculator usage:

You will see two buttons on your calculator, LN and LOG. These are base e and base 10 logs. To find logs of other bases, we will probably need a change-of-base formula discussed later.
expl 2: Find each using the calculator. Round to three decimal places.
a.) $\log 650$
b.) $\ln 80.56$
c.) $\frac{\ln \frac{4}{3}}{0.06}$
d.) $\log _{10}-20$

Change-of-Base Formula:

In the next section, we will see a formula that allows us to find logs of bases other than 10 or e on the calculator. Some newer calculators will do this inherently but older models will not.

Worksheet: Visiting with exponential and logarithmic functions:

This worksheet will explore the relationship between exponential functions and their inverses, logarithmic functions. We will also work on understanding what a logarithm means.

Convert between exponential equations and logarithmic equations:

We have the general notion that $y=\log _{a} x$ and $x=a^{y}$ are equivalent. That means, if we have an equation in exponential form, we should be able to convert it to logarithmic form using these equations as a guide, and vice versa.

You can also do this conversion by thinking about how " $\log _{a} x$ is the number to which I raise a to get x ".
expl 3: Convert the logarithmic equation to the equivalent exponential equation.
a.) $\log _{10} 10,000=4$

b.) $\log _{3} x=4$
c.) $\log _{x} y=0.845$
d.) $\ln 4=x$

expl 4: Convert the exponential equation to the equivalent logarithmic equation.
a.) $4^{x}=64$
b.) $10^{y}=9764$
c.) $e^{6} \approx 403.4$

Solving Some Logarithmic Equations:

We can use the equivalence of $y=\log _{a} x$ and $x=a^{y}$ to solve certain log equations as hinted at on the last page. Let's see this in action.
expl 5: Convert to exponential form and then solve the equations for x.
a.) $\log _{3} x=4$

b.) $\log _{3}(2 x+8)=4$
expl 6: To solve this one, notice the x is not within the \log and so the above trick will not work. Rather than converting to exponential form, determine what $\log _{4} 4096$ is and then continue to solve for x.
$\log _{4} 4096=3 x-5$
expl 7: A model for advertising response is given by $N(a)=1000+200 \ln a, \quad a \geq 1$. Here $N(a)$ is the number of units sold when a thousand dollars is spent on advertising.
a.) How many units would be sold if they spend $\$ 5,000$ on advertising? 。 What is a ?
b.) Graph the function on the window $[0,25] \times[0,2000]$. What happens to the number of units sold as a increases?
c.) The company would like to sell 1500 units. How much should be spent on advertising? Solve graphically.

