College Algebra
Class Notes

Functions (section 1.2) ${ }^{\circ}$

Idea behind Functions:

Equations like $y=4 x+5$ or $x^{2}+y^{2}=16$ show relationships between variables. These are called relations. They can also be represented by a table of values, a list of ordered pairs, or a graph which is just a picture of those ordered pairs. A function is a special kind of relation. Let's review some terminology to help us understand how they are special.

Definition: Domain: the set of all x values (that will give you a real number out for y)
Definition: Range: the set of all y values (that you can get out for y)

But do you remember what a real number is? What would cause the output to be non-real?
expl 1: Consider the sets of ordered pairs and their illustrations below. Determine the domains and ranges of these relations.

$$
\text { a.) }(4,1),(5,2),(6,3) \text {, and }(7,4)
$$

What is the domain? What is the range? Write your answers in set notation.
b.) $(4,1),(4,2),(5,8)$, and $(6,9)$

What is the domain? What is the range? Write your answers in set notation.

Definition: Function: a relation where every x value in the domain is assigned to exactly one y value.

In example 1 above, which relation is a function and which is not? Explain.

Vertical Line Test: Given a graph, the vertical line test will tell you if it is a function. If any vertical line could be drawn so that it crosses the graph more than once, then it is not a function. (The vertical line represents a single x value. If this vertical line hits the graph more than once, that x value has more than one y value and so the relation is not a function.)

Try the vertical line test on part e above.
expl 3: Use the vertical line test to determine if the following are functions.

Interpretation: You can think of a function in a few different ways.

1. a relationship between two variables, x and y,
2. a rule that tells you what to do to an x value to get out a y value, or
3. a machine that produces a y value when you input an x value.

In certain applications, one understanding of function may serve us better than the others.

Function notation:

Check to see if the following relationships are functions.

$y=2 x^{2}+4$		$y^{2}=x$ (solved as $\left.y= \pm \sqrt{x}\right)$		
x	$y=2 x^{2}+4$	x	$y= \pm \sqrt{x}$	
-3		9		
0		16		

Does any x value result in more than one y value?

0		16	
3		25	
Is y a function of $x ?$	Is y a function of $x ?$		

Since the first relationship is a function, we can use function notation to make sure everyone knows. So we replace the y with $f(x)$ to write $f(x)=2 x^{2}+4$. Sometimes we use different letters like $g(x)$ or $h(x)$, especially if we have more than one function.

expl 4a: Find $f(0), f(-2)$, and $f(5)$ for the function $f(x)=2 x^{2}+4$.

Common Mistakes with Notation: As we use function notation in more complicated ways, understanding the notation and using it correctly will be crucial. For instance, in the previous example, we must never write $f(x)=54$ or $f(5)=2 x^{2}+4$. Whatever you write in the parentheses should be substituted for x in the formula at the same time, on the same line.
expl 4b: Recall that the numbers $0,-2$, and 5 are x values and the $f(x)$ outputs are their corresponding y values. Write your results from part a in ordered pair notation.
expl 4c: Consider our function $f(x)=2 x^{2}+4$. Find $f(-x), f(x+3)$ and $f(x-h)$.

Optional Worksheet: Investigating functions:

This worksheet practices determining if a relationship is a function and using function notation. Solutions are available on www.stlmath.com.
expl 5: Forensic science uses the function $H(x)=2.59 x+47.24$ to estimate the height $H(x)$ of a woman (in centimeters) given the length x (in centimeters) of her femur bone.
a.) Estimate the height of a woman whose femur bone measured 40 cm . Round your answer to two decimal places.

b.) I am 5' 5" (or 165.1 centimeters). How long would you expect my femur to be? Round your answer to two decimal places.

Review of Interval Notation:

Do you remember interval notation? Provide each real number line graph and interval notation for these sets of numbers. The real number line graphs help me to visualize the sets.

expl 6: Find the domains and ranges for the various functions. Use interval notation or set notation where appropriate.
a.)

b.)

c.)

expl 7: Find the domains of the functions below. Use interval notation or set notation where appropriate.
a.) $y=\frac{3}{x+4}$
b.) $h(x)=\sqrt{2 x+6}$
c.) $y=5 x+9$
$\circ \bigcirc$

Optional Worksheet: Investigating functions 2:

This worksheet works you through function notation as well as domain and range. Solutions are available on www.stlmath.com.

Factors versus terms: 0

terms: things we are adding (or subtracting)

expls: $\underline{\underline{x}}+\underline{\underline{4}}$ or $\underline{\underline{2 x}}+\underline{\underline{3}}$ or $\underline{\underline{4 x^{2}}}+\underline{\underline{3 x}}-\underline{\underline{6}}$
factors: things we are multiplying expls: $\underline{\underline{5}} \cdot \underline{\underline{x}}$ or $\underline{\underline{3}(\underline{x+2})}$ or $\underline{\underline{4}} \cdot \underline{\underline{x^{2}}}$

The reason this distinction is important is because we will use these words a lot. When we simplify expressions, what we do and why (the rules that govern real numbers) depends a lot on if we are adding (or subtracting) versus if we are multiplying (or dividing).

Can you make up your own example of terms and factors?
expl 8: Use the graph of the function $f(x)$ to the right. Find the following values. Estimate if needed.
a.) $f(-1)$
b.) $f(0)$

c.) $f(2)$

Worksheet: Investigating functions 3:

We work on the definition of a function, domain, and finding function values graphically and algebraically.

