## College Algebra

Class Notes ○


Inverses and One-to-One Functions (section 5.1)
Main Idea: Consider the function given below. What does it do to each $x$ value to get its corresponding $y$ value? How would we reverse the process? In other words, what would we do to a $y$ value to get its $x$ value back? That is what a function's inverse does for us.

Consider the function $y=3 x+4$. Below is a verbal model that shows the relationship between $x$ and $y$.


The following table shows some $x$ values and their corresponding $y$ values.

| $x$ | $y=3 x+4$ |
| :--- | :--- |
| -2 | $y=3(-2)+4=-2$ |
| -1 | $y=3(-1)+4=1$ |
| 0 | $y=3(0)+4=4$ |
| 1 | $y=3(1)+4=7$ |
| 2 | $y=3(2)+4=10$ |



We want to reverse this process. If the original process multiplies by 3 and adds 4, how would you reverse that? Does the order of your operations matter?

Write down a formula for your inverse.


Variables of Inverses: Let's think about our use of $x$ and $y$. We denote inputs as $x$ and outputs as $y$. This is true for the original $y=3 x+4$. However, when we think about its inverse, we essentially switch the roles of $x$ and $y$, using $y$ values as inputs and $x$ values as outputs. This idea with the previous discussion leads to a general scheme for algebraically finding inverses.

## Algebraic Steps for Finding Inverses:

To find the inverse of a function,

1. Switch the $x$ and $y$ in the equation, and
2. Solve the equation for $y$.


Try this procedure with $y=3 x+4$.

Notation: If we let $f(x)$ be a function, then we can call its inverse $f^{-1}(x)$. This is pronounced simply " $f$ inverse of $x$ ". For instance, we could write $f(x)=3 x+4$ and $f_{0}^{-1}(x)=\frac{x-4}{3}$.
expl 1: Complete the following to investigate inverses.
a.) Use the function $f(x)=3 x+4$ to find $f(12)$.

This is not
a.) Use the finction $f(x)=3 x+4$ to find $f(12)$
b.) Use the function $f^{-1}(x)=\frac{x-4}{3}$ to find $f^{-1}(40)$.
c.) Explain the connection between $f(12)$ and $f^{-1}(40)$.
expl 2: Find the inverse of the relation. You do not need to solve part $c$ for $y$.
a.) $\{(3,2),(-5,4),(1,6)\}$
c.) $x^{3} y=15$
b.) $y=4 x-5$

## Definition: One-to-One Functions:

A function is one-to-one (1-1) if for every $y$ value, there is exactly one $x$ value. Consider the function below.


A function is 1-1 if different inputs have different outputs. Or rather, if $a \neq b$, then $f(a) \neq f(b)$. Another way to state this is, if $f(a)=f(b)$, then $a=b$. We'll use this to prove a function is $1-1$ or to algebraically show it is not.
expl 3: Graph the function and determine if it is one-to-one. Copy your graphs here.
a.) $y=|x+4|$
b.) $g(x)=-x^{3}+2$

## Why is being one-to-one important?

Remember how $y=x^{2}+1$ was found to not be one-to-one? Find the inverse of $y=x^{2}+1$. Is this inverse a function?

Restricted Domains: It turns out that if a function is not 1-1, then its inverse will not be a function. And that is a problem because algebra loves functions. What's a person to do?

We could restrict the domain of the original function so that its inverse is a function. Consider the function below whose domain is currently "all real numbers". Lop off part of it so that the remaining part is one-to-one. What is the new (restricted) domain?



## Worksheet: Inverses of functions 2

This worksheet will provide practice for finding an inverse and exploring the concept of one-toone functions and restricted domains.

## Optional Worksheet: Inverses of functions

This worksheet discusses finding inverses graphically and algebraically. It also discusses one-toone functions and restricted domains.

## Graphical Interpretation of Inverses:

expl 4: Find the inverse for the function $y=x^{3}+2$ pictured below by reversing the ordered pairs.


expl 5: Consider the function $g(x)=\sqrt{x+3}$. Answer the following questions.
a.) Algebraically find the inverse of $g$.

b.) Graph both functions on the same plane. Determine the domain and range for both $g$ and $g^{-1}$.


Graphing functions with restricted domains: Your calculator will graph with restricted domains. For instance, let's graph the function and its inverse from the previous example.

Enter the following into the calculator.

expl 6: The formula $T(x)=\frac{5}{9}(x-32)$ converts Fahrenheit temperatures $x$ to Celsius temperatures $T(x)$.
a.) Find $T(95)$.
b.) Define $x$ and $y$ for the function $T(x)$.
c.) Find $T^{-1}(x)$ and explain what it represents. In other words, define $x$ and $y$ for this function.
d.) Without doing the calculation, what do you think $T^{-1}(35)$ is equal to? Explain.

These two problems are optional.
expl 7: For the function $f$, use composition to show that $g$ is its inverse. In other words, show that $f(g(x))=x$ and $g(f(x))=x$.
$f(x)=\frac{2}{5} x+1$
$g(x)=\frac{5 x-5}{2}$

expl 8: Prove the following function is one-to-one.
$f(x)=4-2 x$


