College algebra
Class notes

Rational Functions with Vertical, Horizontal, and Oblique Asymptotes (section 4.5)
Definition: Rational Function: A rational function is a function that can be written in the form $r(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomial functions and $q(x) \neq 0$.

The domain of any rational function is all real numbers except the numbers that make the denominator zero or where $q(x)=0$.
examples: $y=\frac{3 x^{2}+5 x-4}{x+6} \quad \circ \bigcirc \bigcirc \begin{aligned} & \text { What are these } \\ & \text { functions' } \\ & \text { domains? }\end{aligned}$

$$
f(x)=\frac{5 x+4}{7 x^{10}-35 x^{7}+7}
$$

counterexamples: $y=\frac{\sqrt{3 x^{2}-4 x+7}}{5 x^{2}-3 x}, \quad h(t)=\frac{5 t^{-4}+7}{6 t-5 t^{6}+81}$

We will study vertical and horizontal/oblique asymptotes of these functions. Knowing where the asymptotes lie and how to find x and y-intercepts will help us understand their graphs.

Worksheet: Rational functions: Vertical Asymptotes:

This worksheet discusses finding vertical asymptotes by determining where the denominator is zero. It also looks at the exception to the rule, where holes in the graph will occur.

Vertical Asymptotes: Vertical asymptotes and domain are related. The domain is essentially all real numbers except those that make the bottom zero. Often, these are also where the vertical asymptotes lie. If the numerator and denominator have a common factor, then the resulting zero is not a vertical asymptote, but rather a hole in the graph. This is discussed on the preceding worksheet.

Drawing Graphs: Consider the rational function $y=\frac{2 x+3}{x^{2}-3}$. Graph it in the standard window. Older calculators' graphs will probably look like the left picture below. In "connect" mode, the calculator plots vertical lines where there don't belong. When you copy it, draw these asymptotes as dashed lines and label them. Newer calculators may graph it correctly as the right picture below (but without dashed lines). Draw arrows on all the ends.

expl 1: Find the domain and determine the vertical asymptotes (or holes in the graph) for the functions below.
a.) $f(x)=\frac{x^{2}-4}{(x+5)(x+2)}$

b.) $y=\frac{4}{2 x^{3}-x^{2}-3 x}$

Horizontal and Oblique Asymptotes:

Horizontal and oblique asymptotes are essentially the end behavior of rational functions. They tell us what is happening at the left and right ends of the graph.

We will see how the graph approaches a horizontal line or a slanted (oblique) line at the left and right ends. On occasion, we will see a graph approach a curved (oblique) asymptote such as $y=x^{2}+4$.

Consider the previous graph of $y=\frac{2 x+3}{x^{2}-3}$. What does it look like the y values are approaching on the left and right ends of the graph?

Worksheet: Rational functions: Horizontal and Oblique Asymptotes:

This worksheet will show you the procedures and many examples for finding horizontal and oblique asymptotes.

Horizontal and Oblique Asymptotes:

The horizontal or oblique asymptotes depend on the degrees of the polynomials on top and bottom that make up the rational function.

We will see three cases: 1. degree on top is equal to degree on bottom,
2. degree on top is less than degree on bottom, and
3. degree on top is greater than degree on bottom.

1. If the degree on top is equal to the degree on bottom, then divide the leading coefficients to determine the horizontal asymptote. The horizontal asymptote will be " $y=$ this quotient".
2. If the degree on top is less than the degree on bottom, then $y=0$ is the horizontal asymptote.
3. If the degree on top is greater than the degree on bottom, then there is no horizontal asymptote. Instead, there is an oblique (or slant) asymptote that is found by dividing the top by the bottom using polynomial long division.
[Polynomial long division was discussed in a previous section we skipped so we will need to discuss it here.]

A note about graphs and asymptotes: Vertical asymptotes occur where the function is undefined. So the graph will never cross a vertical asymptote. Horizontal or oblique asymptotes are simply what the graph approaches at the ends of the graph. A graph can cross through a horizontal or oblique asymptote but it does not have to. All asymptotes are not part of the function so should be drawn as dashed lines.
expl 2: Find the horizontal or oblique asymptote for the functions below. Be sure to write it in " $y=\ldots$ " form. How do you know if the asymptote is horizontal or oblique?
a.) $y=\frac{x^{3}}{2 x^{3}-x^{2}-3 x}$

b.) $g(x)=\frac{x^{2}+4 x}{x^{3}+5 x}$
expl 3: Since the degree on top is greater than the degree on bottom for the following function, we know it has an oblique asymptote. Find it.

$$
g(x)=\frac{x^{2}+4 x-1}{x+3}
$$

Polynomial Long Division: We can divide a polynomial $P(x)$ by another polynomial $d(x)$ to obtain a quotient $Q(x)$ and remainder $R(x)$. We could say that $P(x)=d(x) \cdot Q(x)+R(x)$.

Recall how we divide plain old numbers by long division. In fact, do the long division below to recall the steps.

Now we will do the long division to find the quotient of $\frac{x^{2}+4 x-1}{x+3}$. I show the steps of the division problem above so that you can see how polynomial long division is analogous to it.

Polynomial Long Division:

Step 1: Write it with a division symbol. Look only at the leading terms of the divisor and the dividend (double underlined below). Ask yourself, what times the " x " would make " x ""? This is similar to asking "how many times does 5 go into 7 " in the division problem below on the right.

$\underline { \underline { x } } + 3 \longdiv { \underline { \underline { x ^ { 2 } } } + 4 x - 1 }$	$5 \longdiv { 7 3 }$

Step 2: You answer " x ". So you write that on top of the division symbol, preferably above the " x^{2} " term.

x	1
$\underline { \underline { x } } + 3 \longdiv { \underline { \underline { x ^ { 2 } } } + 4 x - 1 }$	$5 \longdiv { 7 3 }$

Step 3: You multiply x by the divisor " $x+3$ " and write that below the dividend. You then subtract that from the dividend's " x 2 $+4 x$ ".
$\underline { \underline { x } } + 3 \longdiv { \underline { \underline { x ^ { 2 } } } + 4 x - 1 }$
$\frac{-\left(x^{2}+3 x\right)}{1 x}$

Step 4: You drop the next term down from the dividend, the " -1 ". Looking at the double underlined terms, ask yourself what times the " x " makes " $1 x$ "?

\[

\]

$$
\begin{aligned}
& \frac{1}{5 \longdiv { 7 3 }} \circ \circ \\
& \frac{-5}{23}
\end{aligned}
$$

Step 5: You answer "positive 1" so you write "+ 1" in the quotient space.

$x+1$	
$\underline{\underline{x}}+3$$x^{2}+4 x-1$ $-\left(x^{2}+3 x\right)$ $\underline{\underline{1 x}}-1$	573

Step 6: You multiply just the 1 by the divisor " $x+3$ " and write that below the " $1 x-1$ ". You then subtract like in step 3.

$\begin{gathered} x+1 \\ \underline { x } + 3 \longdiv { \underline { \underline { x ^ { 2 } } + 4 x - 1 } } \\ \underline{\left.\underline{\left(x^{2}\right.}+3 x\right)} \end{gathered}$
$\begin{gathered} \underline{\underline{1 x}}-1 \\ -(1 x+3) \\ \hline \end{gathered}$
-4

$5 \longdiv { 1 4 }$
$\frac{73}{-5}$
23
-20
3

Step 7: You are done when the degree of the remainder (which is the bottom line) is less than the degree of your divisor. The analog to this in the problem on the right is that you stop when that number is less than your divisor.

Return to expl 3: For our purposes in this section, the oblique asymptote we are after is the quotient. Write the oblique asymptote of $y=\frac{x^{2}+4 x-1}{x+3}$. Then graph both the original function and its asymptote. The standard window should be fine.

Synthetic division can be performed in place of long division when the divisor is in the form $x-c$. I am not including that procedure here.
expl 4: Find the oblique asymptotes for the functions below.
a.) $y=\frac{2 x^{3}-4 x}{x^{2}-x}$

0

b.) $f(x)=\frac{5 x^{3}-x^{2}+x-1}{x^{2}-x+2}$
c.) $y=\frac{x^{3}+1}{x}$

Graph Rational Functions:

1. Find the real zeros of the denominator. Use this to determine the domain and possible vertical asymptotes. Sketch vertical asymptotes with dashed lines.
2. Factor the top and bottom of the function. If there are common factors on top and bottom, identify holes in the graph. Holes replace vertical asymptotes at these values.
3. Find the horizontal or oblique asymptote. Sketch it with a dashed line.
4. Find the x - and y-intercepts, if they exist.
expl 5: Consider the function here. Find the following and then identify the correct graph.
$y=\frac{2 x^{3}-4 x}{x^{2}-x}$
a.) Find the domain.
b.) Find the vertical asymptotes and/or holes in the graph.
c.) Find the horizontal or oblique asymptote. (We did this in example 4.)
expl 5 continued:
d.) Find the x - and y-intercepts, if they exist.
e.) Which of the following is the graph of this function?

expl 6: The population P, in thousands, of a senior community is given by $P(t)=\frac{500 t}{2 t^{2}+9}$ where t is the time in months.
a.) Find the horizontal asymptote of the graph and complete the statement
$P(t) \rightarrow$ \qquad as $t \rightarrow \infty$.
b.) Explain the meaning of the answer to part a.
c.) Graph the function on the window [0,25] x [0, 100]. Be sure to put the entire bottom in parentheses.
expl 7: Make up any rational function that has vertical asymptotes at $x=4$ and $x=-5$.

