College algebra
Class notes
Polynomial Functions (section 5.1)
We will learn the basics of polynomial functions and their graphs.

Definition: Polynomial function:
A polynomial function is a function that can be written in the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}$ where $a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{0}$ are real numbers and the exponents are whole numbers.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& f(x)=m x+b \\
& y=\frac{1}{2} x^{5}-4 x^{4}+2 x^{3}-7 \\
& f(x)=\sqrt{5} x^{3}+4 x^{2}-x+10 \\
& g(x)=\sqrt{2} x^{2}-5 x^{7}+4 x^{6}-\sqrt{12} \\
& y=(2 x+3)(x-1)
\end{aligned}
$$

Standard form
means the exponents are in decreasing order.

Some counterexamples follow. Can you tell why they are not polynomials? How do they not fit the definition?
counterexpls: $y=4 x^{-3}+2 x-7, \quad f(x)=\frac{1}{2} \sqrt{x}+4 x^{2}, \quad y=\frac{14 x^{2}+x}{x^{3}-8}$

Terminology:

$a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{0}$ are called coefficients
a_{0} is called the constant coefficient (or term)
a_{n} is called the leading coefficient

$a_{n} x^{n}$ is called the leading term
n is called the degree
x is called the variable

Characteristics of Graphs of Polynomial Functions:

1.) The domain will always be "all real numbers". (We have no square roots or division by 0 in polynomial functions. So nothing stands in the way of an x value "working" in the function.)
2.) The graph is continuous. This means you could trace the whole graph from the left end to the right end without lifting your pencil.
3.) The graph has no sharp corners. It is a smooth curve.
4.) The last major characteristic of a polynomial graph is its end behavior. End behavior answers the question, "what is happening to the y values at the (left and right) ends of the graph?" We'll investigate end behavior next.

Look at the graphs below.

Worksheet: Polynomial functions: End behavior:

This worksheet explores the end behavior of the graphs of polynomial functions. We look at what is happening to the y values at the (left and right) ends of the graph. In other words, we are interested in what is happening to the y values as we get really large x values and as we get really small (negative) x values.

Fill in this table as a summary of what you learned from the worksheet. Recall how the leading term alone will determine a polynomial function's end behavior. This is sometimes referred to as the Leading Term Test.

	Leading coefficient is negative	Leading coefficient is positive
Degree is odd		
Degree is even		

expl 1: Determine the leading term, leading coefficient, constant term, and the degree of the polynomial.
a.) $r(x)=-5 x^{4}+2 x^{3}-7$
b.) $f(x)=3-5 x^{2}+9 x^{3}-6 x^{7}+5 x$

expl 2: Find the end behavior of each function. Write the end behavior using the notation shown in the worksheet "Polynomial functions: End behavior".
a.) $r(x)=-5 x^{4}+2 x^{3}-7$
b.) $f(x)=3-5 x^{2}+9 x^{3}-6 x^{7}+5 x$

Worksheet: Polynomial functions: End behavior 2:

This worksheet will help you practice use the procedure and notation described here.

Definition: Power function: A power function is a polynomial function with only one term (called a monomial). In general, we write this as $y=a x^{n}$ where a is a real number not equal to 0 and n is an non-negative integer. Notice that n would be the degree of this function.

Connection Between Polynomial End Behavior and Power Functions:

Since the end behavior of a polynomial function is solely determined by the leading term, we can talk about the end behavior of a polynomial function f by referring to the power function that "resembles the graph of f for large values of $|x|$."

For instance, consider the function from the last page, $r(x)=-5 x^{4}+2 x^{3}-7$. Which "power function" would the graph of $r(x)$ resemble for large values of $|x|$?

Zeros of Polynomial Functions:

Recall: Definitions: Zero and x-intercept:

An x-intercept is where the graph hits the x-axis. Since the y value is 0 at these points, these are also the x values that make $f(x)=0$. A real number that makes $f(x)=0$ is called a real root or real zero.
expl 3: Use substitution to determine if the values -5 and 3 are zeros of the function $g(x)=3 x^{2}+9 x-30$.

expl 4: Consider the function $f(x)=x(x-3)^{2}(x+1)$. Algebraically solve $f(x)=0$ to find the zeros of this function.

What did you get? Notice how these zeros are tied directly to the factors of $f(x)$. The following theorem spells this relationship out.

Zero / Factor Theorem:

Let f be a polynomial function and r be a real number in its domain. The expression $x-r$ is a factor of f if and only if r is a zero of f.

。

Definition: Multiplicity of a zero: The multiplicity of a zero (or root) is the number of times its corresponding factor appears in the factored form of the polynomial.

The book uses this more exacting definition.
Definition: Real zero of multiplicity \boldsymbol{m} : If $(x-r)^{m}$ is a factor of a polynomial f and $(x-r)^{m+1}$ is not a factor of f, then r is called a real zero of multiplicity m.
expl 5: In the last example, we found the zeros of this function. State each zero's multiplicity.

$$
f(x)=x(x-3)^{2}(x+1)
$$

It turns out that the multiplicity of a zero impacts how the graph appears at that x-intercept. Graph this function on the standard window.

We have this result.

Graphs of Zeroes and Their Multiplicities:
If r is a zero of odd multiplicity, the graph will cross through the x-axis at r.

If r is a zero of even multiplicity, the graph will only touch the x-axis at r.

expl 6: Find a polynomial function of degree 3 whose real zeros are $-3,0$, and 4 . Simplify your answer; leave it in standard form.

expl 7: Find a polynomial function of degree 3 whose real zeros are $-3,0$, and 4 and also passes through the point $(5,160)$. Simplify your answer; leave it in standard form.

Turning Points:

Definition: Turning point: A turning point in the graph is where it changes from increasing to decreasing or vice versa.

It happens to be true that a degree n polynomial can have no more than $n-1$ turning points. (Relatedly, the graph can have no more than n zeros.)

expl 8: Mark the turning points, if they exist, on the graphs below.
a.)

Verifying a Complete Graph:

Knowing what we know (the end behavior, the maximum number of zeros, and the maximum number of turning points that a function can have) helps us graph it by hand or determine if we have a complete graph on the calculator.

For instance, let's say we graph $y=x^{4}-11 x^{3}+42 x^{2}-64 x+32$. The graph is shown below. Using what you learned from this section, explain how you know it has to be a complete graph.

$$
y=x^{4}-11 x^{3}+42 x^{2}-64 x+32
$$

