We will draw approximate solutions curves for 1st-order diff. eq. initial value problems. The Approximation Method of Euler (Section 1.4)

Definition: Euler's Method (or **tangent line method**): **Euler's Method** is a procedure for constructing approximate solutions to an initial value problem for a first-order diff. eq. $y' = f(x, y), \quad y(x_0) = y_0.$

It is a mechanical or computerized method of sketching a solution by hand using the direction field.

First, recognize that if we define y' = f(x, y), then f(x, y) is the slope of the solution curve y at the point (x, y) as before. Do not let the switch in our notation distract you.

What we will do:

Start at (x_0, y_0) and find $f(x_0, y_0)$. This is the slope of y at this point so draw a tangent line segment (with that slope) until we get to a second point we'll call (x_1, y_1) . Rinse and repeat.

So, we will next find $f(x_1, y_1)$ and use that to draw another tangent line segment to get to a third point (x_2, y_2). Repeat, repeat, repeat... Oh, bless the mighty computer! All bow to our computer overlords!

Our book illustrates this nicely.

Figure 1.15 Polygonal-line approximation given by Euler's method

So how do we pick the points we use?

We start with (x_0, y_0) which is given to us. It is called the initial condition. You decide (or are told) the step size *h* to use. This **step size** is the difference between successive *x*-values.

Euler's Method Procedure:

For first-order diff. eq. y' = f(x, y) with initial condition (x_0, y_0) and step size h, we use the following formulas.

$$x_{n+1} = x_n + h$$

$$y_{n+1} = y_n + h \cdot f(x_n, y_n) \text{ where } n = 0, 1, 2, \dots$$
The book shows the formulas' derivations.

We will do this once by hand in class so you see the process slowly. However, I will expect you to use an online calculator for homework.

expl 1: Use Euler's method to approximate the solution to the following initial value problem at the points x = .1, .2, .3, .4, .5 (using step size h = .1). We will use the table below to organize.

$\frac{dy}{dx} = x + y$	y, y(0) = 1 y(0) = 1	Use the given formula for dy/dx .	To find the next x and y , use Euler's formulas.
x	° y	<i>dy/dx</i>	formula work
$\frac{x}{x_0=0}$	<u> </u>	<i>uy/ux</i>	Tor mana work
$x_1 = .1$			
$x_2 = .2$			
$x_3 = .3$			
<i>x</i> ₄ = .4			
$x_5 = .5$		(do <i>not</i> need)	

Online Euler calculator:

We will use an online calculator. There is a link from <u>www.stlmath.com</u> but its direct address is <u>www.math-cs.gordon.edu/~senning/desolver</u>. You can find others on the Internet.

expl 2: Use Euler's method to find approximations to the solution of the initial value problem $y' = 1 - \sin(y)$, y(0) = 0 at $x = \pi$ taking 1, 2, 4, and 8 steps.

We will see this online calculator in class. The following should be kept in mind.

- -- The online calculator uses the variables (*t*, *y*).
- -- They use t_1 to mean the *final* t-value (or x-value, using the other assignment of variables).
- -- You need to use multiplication signs and parentheses where applicable.
- -- You can use "pi" for π .
- -- Select "Graph and Data points" under "Output format".

-- Step size h (remember, *not* the same as N) needs to be a fraction or decimal. You *cannot* use "pi" but you can use 3.14 in its place.

-- The output is an approximate graph of the solution function y. The rudimentary table shows x and y-values along the way. The final y-value in the table is our desired y-value.

π π/2 π/4	Which value of $y(\pi)$ would you say was likely the most accurate approximation?
π/4	
$\pi/8$	But more steps bring more

expl 2 continued: Record the various values of $y(\pi)$ here.

Finding a step size within an acceptable margin of error:

expl 3: Use the strategy of example 3 [in book] to find a value of h for Euler's method such that y(1) is approximated to within ± 0.01 , if y(x) satisfies the initial value problem y' = x - y, y(0) = 0.

Also, find, within ± 0.05 , the value of x_0 such that $y(x_0) = 0.2$. Compare your answers with those given by the actual solution $y = e^{-x} + x - 1$.

Number of steps	Value of <i>h</i> , step size	Value given for y(1)	method to approximate $y(1)$, halving h each time until
2			the approximations are less
4			than 0.01 apart.
8			
16			
32			
64			
			Round final $y(1)$ value to two decimal places. Include ± 0.01 .

So how close is our approximation? Use the given solution $y = e^{-x} + x - 1$ to find y(1) to compare.

For the second question, we are asked to find, within ± 0.05 , the value of x_0 such that $y(x_0) = 0.2$. We use *h* to be 0.1. That's twice the needed error of 0.05. You'll see why in a second. Use the online calculator to partially fill in the table.

x	у	
0	0	
.1		
.2		
.3		
.4		
.5		
.6		
.7		\sim
.8		• Where is
		$y(x_0) = 0.2$ as they ask for?
.9		they ask for?
1.0		

Phrase your answer as a number rounded to two decimal places with ± 0.05 . Check it against the actual solution.

expl 4: Stefan's Law of Radiation: This law states that the rate of change in temperature of a body at T(t) kelvins in a medium at M(t) kelvins is proportional to $M^4 - T^4$. That is,

 $\frac{dT}{dt} = K\left(M\left(t\right)^4 - T\left(t\right)^4\right) \text{ where } K \in \mathbb{R} \text{ . Let } K = 2.9 \text{ x } 10^{-10} \text{ (min)}^{-1} \text{ and assume that the}$

medium temperature is constant, $M \equiv 293$ kelvins. If T(0) = 360 kelvins, use Euler's method with h = 3.0 minutes to approximate the temperature of the body after 30 minutes and 60 minutes.

Worksheet: Euler's Method for Approximating Function Values:

This worksheet practices Euler's method to approximate values of the unknown solution function. We also explore finding the value of the independent variable given the solution's value, to within a certain margin of error.