Differential Equations
Class Notes

Definition: Euler's Method (or tangent line method): Euler's Method is a procedure for constructing approximate solutions to an initial value problem for a first-order diff. eq.

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

It is a mechanical or computerized method of sketching a solution by hand using the direction field.

First, recognize that if we define $y^{\prime}=f(x, y)$, then $f(x, y)$ is the slope of the solution curve y at the point (x, y) as before. Do not let the switch in our notation distract you.

What we will do:

Start at (x_{0}, y_{0}) and find $f\left(x_{0}, y_{0}\right)$. This is the slope of y at this point so draw a tangent line segment (with that slope) until we get to a second point we'll call (x_{1}, y_{1}). Rinse and repeat.

So, we will next find $f\left(x_{1}, y_{1}\right)$ and use that to draw another tangent line segment to get to a third point (x_{2}, y_{2}). Repeat, repeat, repeat... Oh, bless the mighty computer! All bow to our computer overlords!

Our book illustrates this nicely.

Figure 1.15 Polygonal-line approximation given by Euler's method

So how do we pick the points we use?

We start with (x_{0}, y_{0}) which is given to us. It is called the initial condition. You decide (or are told) the step size h to use. This step size is the difference between successive x-values.

Euler's Method Procedure:

For first-order diff. eq. $y^{\prime}=f(x, y)$ with initial condition $\left(x_{0}, y_{0}\right)$ and step size h, we use the following formulas.

$$
\begin{aligned}
& x_{n+1}=x_{n}+h \\
& y_{n+1}=y_{n}+h \cdot f\left(x_{n}, y_{n}\right) \text { where } n=0,1,2, \ldots
\end{aligned}
$$

We will do this once by hand in class so you see the process slowly. However, I will expect you to use an online calculator for homework.
expl 1: Use Euler's method to approximate the solution to the following initial value problem at the points $x=.1, .2, .3, .4, .5$ (using step size $h=.1$). We will use the table below to organize.

$\frac{d y}{d x}=x+y, y(0)=1$			
$x_{0}=.1$			
$x_{2}=0$			
$x_{3}=.3$			

Online Euler calculator:

We will use an online calculator. There is a link from www.stlmath.com but its direct address is www.math-cs.gordon.edu/~senning/desolver. You can find others on the Internet.
expl 2: Use Euler's method to find approximations to the solution of the initial value problem $y^{\prime}=1-\sin (y), \quad y(0)=0 \quad$ at $x=\pi$ taking $1,2,4$, and 8 steps.

First, what is $\left(x_{0}, y_{0}\right)$?

What will our x-values be if we take $1,2,4$, or 8 steps?

| Number of
 steps, N | The values of x, or x_{i} | Step size,
 \boldsymbol{h} |
| :---: | :--- | :---: | :---: |
| 1 | | |
| 2 | | |
| 4 | | |
| 8 | | |

We will see this online calculator in class. The following should be kept in mind.
-- The online calculator uses the variables (t, y).
-- They use t_{1} to mean the final t-value (or x-value, using the other assignment of variables).
-- You need to use multiplication signs and parentheses where applicable.
-- You can use "pi" for π.
-- Select "Graph and Data points" under "Output format".
-- Step size h (remember, not the same as N) needs to be a fraction or decimal. You cannot use "pi" but you can use 3.14 in its place.
-- The output is an approximate graph of the solution function y. The rudimentary table shows x and y-values along the way. The final y-value in the table is our desired y-value.

expl 2 continued: Record the various values of $y(\pi)$ here.

Finding a step size within an acceptable margin of error:

expl 3: Use the strategy of example 3 [in book] to find a value of h for Euler's method such that $y(1)$ is approximated to within ± 0.01, if $y(x)$ satisfies the initial value problem $y^{\prime}=x-y, \quad y(0)=0$.

Also, find, within ± 0.05, the value of x_{0} such that $y\left(x_{0}\right)=0.2$. Compare your answers with those given by the actual solution $y=e^{-x}+x-1$.

Use the online calculator to fill in the table.

Number of steps	Value of \boldsymbol{h}, step size	Value given for $\boldsymbol{y}(\mathbf{1)}$
2		
4		
8		
16		
32		
64		

So how close is our approximation? Use the given solution $y=e^{-x}+x-1$ to find $y(1)$ to compare.

For the second question, we are asked to find, within ± 0.05, the value of x_{0} such that $y\left(x_{0}\right)=0.2$. We use h to be 0.1 . That's twice the needed error of 0.05 . You'll see why in a second. Use the online calculator to partially fill in the table.

\boldsymbol{x}	\boldsymbol{y}
0	0
.1	
.2	
.3	
.4	
.5	
.6	
.7	
.8	
.9	
1.0	

Phrase your answer as a number rounded to two decimal places with ± 0.05. Check it against the actual solution.
expl 4: Stefan's Law of Radiation: This law states that the rate of change in temperature of a body at $T(t)$ kelvins in a medium at $M(t)$ kelvins is proportional to $M^{4}-T^{4}$. That is, $\frac{d T}{d t}=K\left(M(t)^{4}-T(t)^{4}\right)$ where $K \in \mathbb{R}$. Let $K=2.9 \times 10^{-10}(\mathrm{~min})^{-1}$ and assume that the medium temperature is constant, $M \equiv 293$ kelvins. If $T(0)=360$ kelvins, use Euler's method with $h=3.0$ minutes to approximate the temperature of the body after 30 minutes and 60 minutes.

Worksheet: Euler's Method for Approximating Function Values:

This worksheet practices Euler's method to approximate values of the unknown solution function. We also explore finding the value of the independent variable given the solution's value, to within a certain margin of error.

