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Differential Equations  
Class Notes 
Numerical Methods: A Closer Look at Euler’s Algorithm (Section 3.6)  

After all we have learned, it is still true that the vast majority of differential equations cannot be 
solved by the methods we have studied. Instead, we use numerical methods like we saw earlier 
with Euler’s Approximation Method but, this time around, we will improve on the method.   

Recall, Euler’s Method was as follows.  

Euler’s Method Procedure:  
For first-order diff. eq.  ( , )y f x y   with initial condition  (x0, y0)  and step size  h, we use the 

following formulas.  

 1n nx x h    

  1 ,n n n ny y h f x y      where  n = 0, 1, 2, … 

You will recall that our goal was to obtain an approximation of the solution ( )x  to the initial 

value problem at those points  xn  in some interval (a, b). We generate values  y0, y1, y2, … that 

approximate  0 1 2( ), ( ), ( ), ...x x x    . Truly, we are given  y0 = 0( )x  but we approximate the 

others using the formula above.  

Depending on  h, we get different approximations for  y1, y2, … . As  h  gets smaller, the 
approximation gets more accurate. However, cost and round-off error increases. Can we make a 
better approximation? You betcha! The book explores this and yields the following replacement 
formula for  yn+1.  

Trapezoid Scheme:  

    1 1 1, ,
2n n n n n n

h
y y f x y f x y          where  n = 0, 1, 2, … 

Notice that this formula for  yn+1  actually uses the value for  yn+1  in its calculation. This makes it 
an implicit method.  

To avoid using  yn+1  in its own formula, we can use Euler’s method to estimate  yn+1   

(calling it  
1

*

n
y


) and use this estimate in the trapezoid scheme. This is an example of a 

predictor-corrector method. This turns our formula for  yn+1  into the following, labeled on the 
next page as the Improved Euler’s Method.  

 

 

Can’t solve it? We will 
approximate a solution.  
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Improved Euler’s Method:  

For first-order diff. eq.  ( , )y f x y   with initial condition  (x0, y0)  and step size  h, we use the 

following formulas.  

 1n nx x h    

     1 , , ,
2n n n n n n n n

h
y y f x y f x h y h f x y            where  n = 0, 1, 2, … 

 

So, what do we do with this? The book has provided our steps in the form of a computer 
subroutine. 

 

 

Let’s go to the next page for our first example. We’ll do this first one by hand but then use an 
online calculator for remaining problems.  

 

 

 

Do you see the original 
Euler’s formulas here?  
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expl 1: Use the improved Euler’s method subroutine with step size  h = 0.2  to approximate the 

solution to the initial value problem   21
, (1) 1y y y y

x
    , at the points  x = 1.2, 1.4, 1.6, 

and 1.8. (Thus, input  N = 4.) Compare these approximations with those made using Euler’s 
Method as previously seen (exercise 6, section 1.4). Round as little as possible.  

 

 

 

 

 
 
First, get organized (identify  f (x, y),  x0,  y0, and  h) and define  F  and  
G. Do not bother to simplify  G.  

 

 

 

Our first  y  value is in the table since we are given it. Let’s repeatedly 
perform the subroutine (step 4 really) to find the missing values.  

 

 

 

 

 

 

 

 

           

 

x y 
1 
 

1 

1.2 
 

 

1.4 
 

 

1.6 
 

 

1.8 
 

 

We go through the subroutine 
as a computer would. Fill this 

table with your approximations 
as you go.  

Step 4 of the subroutine says  
“x = x + h”. In computer language, 

this means “the new x equals the old 
x plus h”. They dispense with the 
“n+1” and “n” subscript notation.    
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(extra room) 

 

 

 

 

 

 

 

 

 

Since we use the previous answers in each calculation, round-off error gets worse as we go. The 
more you round answers, the worse this error is.  

Let’s compare our values to the values gotten from the original Euler’s method. I have recorded 
my values for the Improved Euler’s Method. They may differ slightly from yours due to 
rounding.  

 

 

 

 

 

 

 

 

 

 

x y 
(Improved 

Euler’s 
Method) 

y 
(Euler’s 
Method) 

1 1 1 

1.2 1.48 1.400 

1.4 2.25 1.960 

1.6 3.66 2.789 

1.8 6.91 4.110 

Compare our values 
here with the ones 

gotten by using Euler’s 
original method.   
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Actually, this diff. eq. is separable. (In reality, we were just playing with this Euler method since 

it was not needed.) In fact, and you could verify this, the solution is 
1

1 2

y
x

y



. Let’s check 

how good this improved Euler’s Method really did do. Here’s what I got for  y  using the actual 
solution.   

 

 

 

 

 

 

 

 

 

Doing this process by hand can teach you a lot about it. However, my intent is to have you use an 
online calculator for homework and exam problems. We will use the online calculator 
www.math-cs.gordon.edu/~senning/desolver. (This link is available on www.stlmath.com.) You 
will want to select, as the Method, Heun (Improved Euler).  

 

expl 2: Use the improved Euler’s method subroutine with step size  h = 0.1  to approximate 
solutions to  4cos( ), (0) 1y x y y    ,  at the points  x = 0, 0.1, 0.2, 0.3, … 1.0. Use your 

answers to make a rough sketch of the solution on  [0, 1].  

For the online calculator, input the following. 

 ( , ) 4 cosf t y t y    

t0 = 0 
y0 = 1 
t1 = 1.0 
h = 0.1 

Select “Graph and Data points” as the “Output format”. Use the next page to record the results. 
Remember the first column of output gives us the  x-values with the  approximated  y-values in 
the second column.  

x y  
(Improved Euler’s 

Method) 

y  
(Actual 

Solution) 

1 
 

1 1 

1.2 
 

1.48 1.5 

1.4 
 

2.25 2.33 

1.6 
 

3.66 4 

1.8 
 

6.91 9 

Compare the actual 
solutions to the 

approximations. What 
do you notice as we go 

down the table?    

Get organized. The online 
calculator defines the diff. 

eq. as ( , )
dy

f t y
dt

 .     
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Record the table and draw the graph here.  

x approx.  y 
0 
 

1 

0.1 
 

 

0.2 
 

 

0.3 
 

 

0.4 
 

 

0.5 
 

 

0.6 
 

 

0.7 
 

 

0.8 
 

 

0.9 
 

 

1.0  
 

 

 

Euler’s Method with Tolerance:  

We want to approximate  ( )c   to a desired accuracy,  (epsilon). We did this when we looked 

at Euler’s method before.  

This accuracy depends on  h, the step size.  

Our strategy: Estimate  ( )c   for a given  h, halve  h, compute again and again, continuing to 

halve  h  each time, until two consecutive  ( )c  estimates differ by less than   . The final 

estimate will be taken for  ( )c .  

The book also provides a subroutine for this procedure which I have on the next page with our 
example. However, I do not need you to do any of these by hand. Use the online calculator.  
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expl 3: Use the improved Euler’s method with tolerance to approximate the solution to 
1 sin( ), (0) 0y y y    , at  x = π. Use   = 0.01 tolerance. Use a stopping procedure based on 

absolute error.  

h Approximate  y(π) 
3.1416 3.141612 

 
3.1416 / 2 1.056633 

 
3.1416 / 4  

 
3.1416 / 8  

 
3.1416 / 16  

 
 

 

         

       What is your approximation for  y(π)?  

 

Be sure to select the 
improved method. You will 
have to use  3.1416 for  π.

We will start with an  h  value of 
3.1416 (the number of steps (N) 

being 1), recording the value given 
for  y  at  x = π.  We then halve this 
value of  h  and run the calculator 

again. Continue like this, 
recording your values for  y(π).   

I have recorded the first 
couple of approximations. 
Is their difference within 

the tolerance?  
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Revisit Heating and Cooling of Buildings:  

We can use this stuff to approximate solutions architects might need as they design a building.  

expl 4: In a previous section, we modeled the temperature inside a building by the initial value 

problem    0 0( ) ( ) ( ) ( ), ( )
dT

K M t T t H t U t T t T
dt

     , where  M  is the outside temperature,  

T  is the inside temperature,  H  is the additional heating rate (people, machines, etc.),  U  is the 
furnace and air conditioner heating/cooling rate,  K  is a positive constant (related to doors, 
windows, and insulation), and  T0  is the initial temperature at time  t0. In a typical model,  t0 = 0 

(midnight),  T0 = 65°F,  H(t) = 0.1,  U(t) = 1.5 (70 – T(t)), and   ( ) 75 20cos 12
tM t    .  

The constant  K  is usually between ¼ and ½, depending on such things as insulation. To study 
the effects of insulating this building, consider the typical building described above and use the 
improved Euler’s method subroutine with  h = 2/3 (step size) to approximate the solution to this 
diff. eq. on the interval 0 24t   (1 day) for  K = 0.2, 0.4, and 0.6.  

 

 

 

 

 

 

 
 

Approximate Temperatures Inside the Building Throughout a 24-Hour Day, T(t) 
time M(t) K = 0.2 K = 0.4 K = 0.6 

midnight  
(t = 0) 

55°F 65°F 65°F 65°F 

6:00 am  
(t = 6) 

75°F    

12:00 noon 
(t = 12) 

95°F    

6:00 pm 
(t = 18) 

75°F    

midnight 
(t = 24) 

55°F    

By the way, which value of  K  corresponds to the best insulation?  

First, form  dT
dt . This will be   

f (t, y) in the online calculator. 
Careful with the variable change 
and required multiplication signs! 

Run the calculator 
for each value of  K.  

Again, use 
3.1416 for  π.  


