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Differential Equations  
Class Notes 
Compartmental Analysis (Section 3.2)  

Section 3.1 gives a nice overview of the process of developing a mathematical model for a 
physical situation. We will work in section 3.2 with what is called a compartmental system.  

 

Handout: This will be given out in class but is available on www.stlmath.com under Assorted 
Handouts and Tutorials. It will serve as a good reference as we proceed.  

Differential Equations Study Guide (site, integral-table.com) 
http://integral-table.com/downloads/ODE-Summary.pdf 

 

Many complicated processes can be broken down into distinct stages and the entire system can 
be modeled be describing the interactions between these stages. Such systems are 
compartmental, often depicted by a block diagram.  

We will study the basic unit of a system, a compartment, and analyze processes that can be 
handled by such a model. There are many types of problems that can be solved this way.  

 

Mixing Problems:  

Consider a tank with, say, salt water in it. Let’s say there is a flow of water (or salt water) 
entering the left side and a flow of water leaving the tank on the right. We could measure the 
amount of salt in the tank at any time  t  and therefore know the concentration of salt in the tank. 
Now, wouldn’t that be fun? Here is a picture.  

 

 

The concentration of salt in the tank would be  x(t)  divided by the volume of the tank. We will 

use the fact that  
dx

dt
 input rate – output rate. Hello, old friend, my differential equation.  

If we know the rate of change in a 
single population or closed system, 

we can solve that diff. eq.   
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expl 1: A brine solution of salt flows at a constant rate of  8 L/minute into a large tank that 
initially held  100 L of brine solution in which was dissolved  .5 kg of salt. The solution in the 
tank is kept well stirred and flows out of the tank at the same rate. If the concentration of salt in 
the brine entering the tank is  .05 kg/L, determine the mass of salt in the tank after  t  minutes. 
When will the concentration of salt in the tank reach  .02 kg/L?  

Let’s start off by using that picture from above and putting our information in place.  

 

 

 

 

 

 

 

We know the initial amount of salt, or  x(0). What is it? Do you see an initial value problem 
here? Solve it.  

 

 

 

 

 

 

 

 

 

Find the input and output rates in 
kg/minute. Label them on the picture. 

Form your equation for  
dx/dt  using the generic one 

at the bottom of page 1.   

Once you get your 
diff. eq., you will 
see it as linear.  
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(extra room for work) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once you know  x(t), we can answer the question, “When will the concentration of salt in the 
tank reach  .02 kg/L?”  
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Population Models:  

How do we predict the growth of a population? A single population can be thought of as a 
compartment.  

Let  p(t)  be the population of some species at time  t. There will be a growth (input) rate and a 
death (output) rate. We see our diff. eq. in the Malthusian Model.  

Malthusian Model for Population Growth (Exponential): 
Again,  p(t) is the population at time  t. We have the following.  

1 2 0, (0)
dp

k p k p p p
dt

     

or  0, (0)
dp

kp p p
dt

   

where  k1  is the proportionality constant for growth and  k2  is the proportionality constant for 
death. To simplify, we use  k = k1 – k2. We will assume  k1 > k2 and so  k > 0.  

This equation is separable and solving for  p(t)  gets us  0( ) k tp t p e . 

 

expl 2: In 1990, the Department of Natural Resources released  
1,000 splake (a crossbreed of fish) into a lake. In 1997, the population  
was estimated to be 3,000 splake. Using the Malthusian law for  
population growth, estimate the population of splake in the year 2020.  

 

 

 

 

 

 

 

 

 

College algebra 
students play with 

this equation.   

No diff. eq. 
needed here.   

First, find  k.  
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expl 3: The initial mass of a certain species of fish is  7 million tons. The mass of fish, if left 
alone, would increase at a rate proportional to its mass, with a proportionality constant of  2/year. 
However, commercial fishing removes fish at a rate of  15 million tons per year. When will all 
the fish be gone? If the fishing rate is changed so that the mass of fish remains constant, what 
should that rate be?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Did you see this as an initial value problem? Use the initial population of  7 million tons to nail 
down the formula for  p(t).  

 

 

 

 

 

Let  p(t) = mass of fish at time  t. 

We know that  dp
dt  is the birth 

rate minus the fishing rate.   

What kind of 
equation is  dp/dt?   
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expl 3 (continued): Now, we can answer the questions. When will all the fish be gone? If the 
fishing rate is changed so that the mass of fish remains constant, what should that rate be? 
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Radioactive Decay:  

The amount of a radioactive substance decays in such a way so that the Malthusian model can be 
used. In fact, the rate of decay is proportional to the amount of substance present much like the 
rate of population growth we saw earlier. We have the following (which could be derived with 
our beautiful methods for solving differential equations but will be left for you to explore on 
your own).  

 

 

 

Radioactive Decay:  
We will let  m(t)  be the mass of substance at time  t. After solving the diff. eq. imagined above, 
we have the following. 

0( ) ktm t m e  

Here, k  is the decay constant that is particular to the substance and  m0  is the initial amount.  

 

expl 4: Initially there are  300 grams of a radioactive substance and after  5 years, there are  200 
grams remaining. How much time must elapse before only  10 grams remain?  

 

 

 

 

 

 

 

 

 

 

 

This could be started as far back as 
solving a diff. eq. but that would only get 

us the equation for  m(t)  we are given 
above. We will simply start there.  

We would start by letting  M  represent the amount 

of substance present. Then we know  dM kMdt   

for some constant  k. Yada, yada, yada, … 

First, find  k.  


