

Differential Equations Class Notes Direction Fields (Section 1.3)

When our diff. eq. is a formula for the unknown function's $\frac{dy}{dx}$, we can use it to graph the "slopes" of the function at various points. From that graph, we can fill in the function itself.

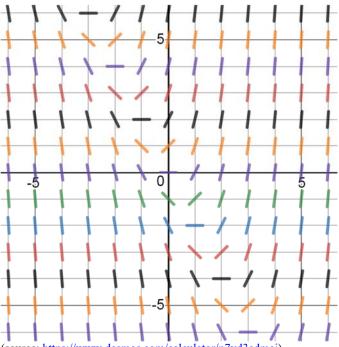
Definition: Direction field for a diff. eq.: a plot of short-line segments drawn at various points in the xy-plane showing the slope of the solution curve (the unknown function) at these points. They are also called **slope fields**.

We will use them to draw specific solution curves for initial value problems.

Consider the first-order diff. eq. $\frac{dy}{dx} = f(x, y)$ for some function f(x, y) in x and y.

Recall y is a function that is the solution to this diff. eq. and $\frac{dy}{dx}$ is the slope of this function. Think of $\frac{dy}{dx} = 2x + y$. What would f(x, y) be?

For instance, if $\frac{dy}{dx} = 2x + y$, we know at some point, say the point (2, 3), the solution (the


function y) must have a slope of $\frac{dy}{dx} = 2x + y$.

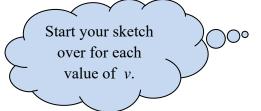
What is the slope of the unknown function at (2, 3)? expl 1: The direction field of $\frac{dy}{dx} = 2x + y$ is drawn below. Answer the questions.

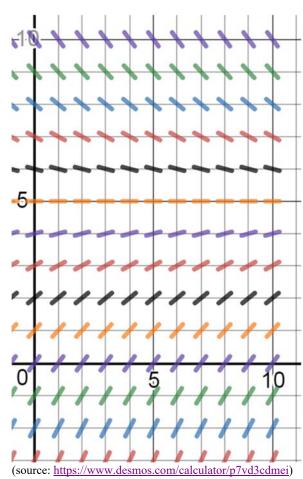
a.) Sketch the graph of the solution curve that passes through (0, -2). From this sketch, write an equation of the solution.

"If a solution goes through a point on the slope field, then its slope at that point would match the segment on the slope field."

--Khan Academy

(source: https://www.desmos.com/calculator/p7vd3cdmei)


Later, we will know this diff. eq. as linear and could solve it to indeed get this solution.

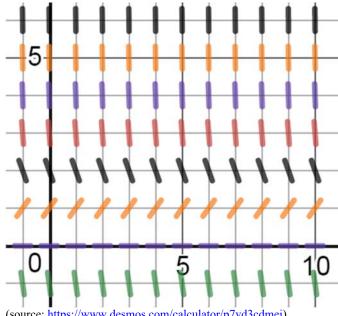

b.) Sketch the graph of the solution curve that passes through (-1, 3). You do *not* need to figure the solution's equation.

c.) What can we say about the solution in part b as $x \to \infty$ and as $x \to -\infty$? In other words, $\lim_{x \to \infty} y = \lim_{x \to \infty} y = ?$

expl 2: A model for the velocity v at time t of a certain object falling under the influence of gravity in a viscous medium is given by the equation $\frac{dv}{dt} = 1 - \frac{v}{5}$. From the direction field given, sketch the solutions with initial conditions v(0) = 3, 5, and 10. Take note of the scale used. Do *not* worry about units such as feet/second.

Why is the value v = 5 called a "terminal velocity"?

expl 3: The logistic equation for the population (in thousands) of a certain species is given by


 $\frac{dp}{dt} = 3p - 2p^2.$

a.) Sketch the direction field by using a computer program. In class, we will use www.desmos.com.

The book also covers the method of isoclines, which we skip.

expl 3 continued: The logistic equation for the population (in thousands) of a certain species is given by $\frac{dp}{dt} = 3p - 2p^2$. Here is the direction field.

b.) If the initial population is 3000 (that is, p(0) = 3), what can we say about the limiting population or $\lim_{t\to\infty} p(t)$?

c.) If p(0) = .8, what is $\lim_{t \to \infty} p(t)$?

d.) Can a population of 2000 ever decline to 800? Explain.

Worksheet: Direction Fields Worksheet:

This worksheet will give you practice sketching solution curves on direction fields and interpreting the results.