

First, let's cover some preliminary definitions.

Definition: Level curves of F(x, y): sets on which the function value is constant. In other words, where F(x, y) = c for some $c \in \mathbb{R}$.

Definition: Total differential of F (or dF) for F(x, y): This is defined to be

$$dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy .$$

Introductory Explorations:

Consider a function F(x, y) = c for some $c \in \mathbb{R}$. Then dF = 0, right?

That implies that $0 = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy$. Alternative versions of this diff. eq. are $\frac{\partial F}{\partial x} dx = -\frac{\partial F}{\partial y} dy$ and $\frac{dy}{dx} = \frac{\frac{\partial F}{\partial x}}{-\frac{\partial F}{\partial y}}$. These are three forms of the same diff. eq. that we will define as **exact**.

Here, F(x, y) = c would be **solutions** to these differential equations.

Definition: Exact Differential Form: The differential expression M(x, y)dx + N(x, y)dy is said to be **exact** in a rectangle *R* if there exists a function F(x, y) such that $\frac{\partial F}{\partial x} = M$ and $\frac{\partial F}{\partial y} = N$ for all (x, y) in the rectangle *R*. That is, $dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = M \cdot dx + N \cdot dy$. Here, we use the abbreviation *M* for M(x, y).

Definition: Exact Differential Equation: If M(x, y)dx + N(x, y)dy is an exact diff. expression, then M(x, y)dx + N(x, y)dy = 0 is an **exact diff. eq.**.

We need a test to determine if an equation is exact and a method to solve these equations.

Test for Exactness:

From calculus, we know $\partial/\partial y \left(\frac{\partial F}{\partial x}\right) = \partial/\partial x \left(\frac{\partial F}{\partial y}\right)$ because of the equality of continuous partial derivatives. Using $\partial F / \partial x = M$ and $\partial F / \partial y = N$, we will write this as $\partial'_{\partial y}(M) = \partial'_{\partial x}(N)$. Using Khan Academy notation, $M_y = N_x$. **Theorem 2: Test for Exactness:**

Suppose the first partial derivatives of M(x, y) and N(x, y) are continuous in a rectangle R. Then M(x, y)dx + N(x, y)dy = 0 is an exact diff. equation in R if and only if the compatibility condition $\partial/\partial y(M) = \partial/\partial x(N)$ holds for all (x, y) in R.

Alternatively,

expl 1: Show this diff. eq. is exact.

$$\begin{bmatrix} 2x + y\cos(xy) \end{bmatrix} dx + \begin{bmatrix} x\cos(xy) - 2y \end{bmatrix} dy = 0$$

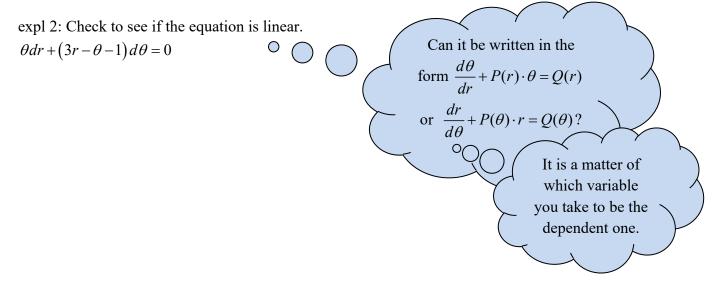
$$(a) = \frac{\partial N}{\partial x}(x, y).$$
Identify M and N. Show that $\frac{\partial}{\partial y}(M) = \frac{\partial}{\partial x}(N).$

$$(b) = \frac{\partial N}{\partial x}(N).$$

$$(c) = \frac{\partial N}{\partial x}(N).$$

When a Linear Equation Appears Non-Linear:

This was mentioned in the last section of notes but not needed in the homework. Now it will be.



Method for Solving Exact Differential Equations:

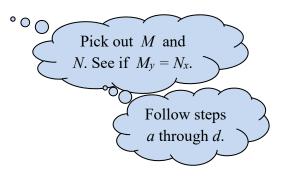
a.) If $M \cdot dx + N \cdot dy = 0$ is exact (meaning, if $M_y = N_x$), then $\frac{\partial F}{\partial x} = M$. Integrate $\frac{\partial F}{\partial x} = M$ to get $F(x, y) = \int M dx + g(y)$. \circ b.) To find g(y), take the partial derivative of this with respect to y to get $\frac{\partial}{\partial y}F(x, y) = \frac{\partial}{\partial y}\int M dx + g'(y)$. Since $\frac{\partial}{\partial y}F(x, y) = N$, we solve for g'(y) and get $g'(y) = N - \frac{\partial}{\partial y}\int M dx$.

c.) Integrate this g'(y) with respect to y to find g(y) up to a constant (meaning, we will end up with a constant due to integration). Then write $F(x, y) = \int M dx + g(y)$.

d.) The solution to the diff. eq. $M \cdot dx + N \cdot dy = 0$ is then said to be F(x, y) = c for some $c \in \mathbb{R}$.

Alternatively, start with $\partial F/\partial y = N$ and so $F(x, y) = \int N dy + h(x)$ and so forth. We do this because it is easier sometimes.

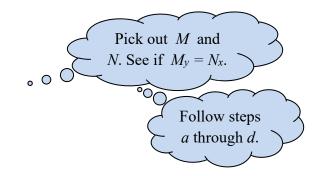
expl 3: Determine if the equation is exact. If so, solve it. (2x+y)dx+(x-2y)dy=0

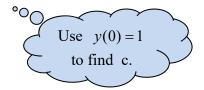


Initial Value Problems:

expl 4: Solve.

$$(\tan y - 2)dx + (x \sec^2 y + \frac{1}{y})dy = 0, \quad y(0) = 1$$





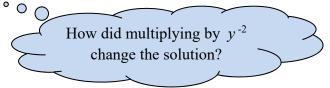
Our solution contains $\ln |y|$ which can be taken as $\ln y$ around the point (0, 1) since y > 0. The book often simplifies a solution this way. However, MyMathLab may *not*.

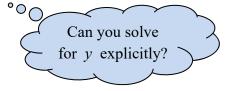
Further Exploration: How do we deal with non-exact equations?:

expl 5: Consider the equation $(y^2 + 2xy)dx - x^2dy = 0$.

Pick out M and N. Show $M_y \neq N_x$.

- a.) Show it is *not* exact.
- b.) Show that multiplying by y^{-2} yields a new equation that *is* exact.
- c.) Use the solution of the new exact equation to solve the original equation.
- d.) Were any solutions lost in the process?





Lost solutions?

Since the original equation and our modified one differ only by a factor of y^{-2} , they should have the same solutions except when this factor is undefined or zero, or when y = 0. Notice this is a solution to the original diff. eq. that does *not* show up because we divided out by y^2 .