Differential Equations
Class Notes
Special Integrating Factors (Section 2.5)
If a diff. eq. is not exact, we will multiply it by a function $\mu(x, y)$ that will make it exact.

Theoretically, an integrating factor exists for all differential equations in the form $M(x, y) d x+N(x, y) d y=0$. However, no general rule is known. Methods are known for certain types and tend to be somewhat messier than what we see here.

In this section, we look at a particular case. We will start with a non-exact diff. eq. and transform it into an exact equation. Then we can use the solution method from the previous section.

Definition: Integrating Factor: If the equation $M d x+N d y=0$ is not exact but $\mu(x, y) M d x+\mu(x, y) N d y=0$ is exact, then the function $\mu(x, y)$ is called an integrating factor of the original equation. Here, $M$ and $N$ are functions in both $x$ and $y$, or rather $M=M(x, y)$ and $N=N(x, y)$.

Once we determine $\mu(x, y)$, or are given it, we multiply our non-exact equation by it and the equation becomes exact.


But wait! Since we multiply by $\mu(x, y)$, it is possible that we lose or gain solutions. We must always check whether any solutions to $\mu(x, y)=0$ are truly solutions to the original diff. eq. In addition, we will also find any values that make $\mu(x, y)$ undefined as these may be solutions.

How do we find $\mu(x, y)$ ?


We have a theorem.
 $\mu(x, y)$ is undefined. Extraneous (gained)
solutions may exist when it's zero.
Theorem 3: Special Integrating Factors: $>$
Consider the non-exact equation $M(x, y) d x+N(x, y) d y=0$.
Case 1: If $f=\left(M_{y}-N_{x}\right) / N$ depends only on $x$, then $\mu(x)=e^{\int f d x}$ is an integrating factor for the diff. eq.
Case 2: If $f=\left(N_{x}-M_{y}\right) / M$ depends only on $y$, then $\mu(y)=e^{\int f d y}$ is an integrating factor for the diff. eq.

Here, I diverge from the book's notation, preferring to use the notation $M_{y}=\frac{\partial M}{\partial y}$ and $N_{x}=\frac{\partial N}{\partial x}$. I also use this construction $f$ to simplify the write-up.


In order to solve the various diff. eqs. that we are given, we must be able to categorize them.
expl 1: Identify the diff. eqs. as separable, linear, exact, or having an integrating factor that is a function of either $x$ or $y$ alone. We will look at each type in turn.
$\left(2 y^{3}+2 y^{2}\right) d x+\left(3 y^{2} x+2 x y\right) d y=0$
Is it separable? Can we write it as $\frac{d y}{d x}=g(y) \cdot h(x)$ ?

Is it linear? Can we write it as $\mathrm{a}_{1}(x) \frac{d y}{d x}+\mathrm{a}_{0}(x) \cdot y=b(x)$ ?

We flip the traditional roles of $x$ and $y$ to see if that is linear.

What about writing it in the form $\mathrm{a}_{1}(y) \frac{d x}{d y}+\mathrm{a}_{0}(y) \cdot x=b(y)$ ?
expl 1 continued: Our equation is $\left(2 y^{3}+2 y^{2}\right) d x+\left(3 y^{2} x+2 x y\right) d y=0$.
Is it exact? For $M d x+N d y=0$, do we have $M_{y}=N_{x}$ ?

Does the diff. eq. have an integrating factor? Can we show that $f=\left(M_{y}-N_{x}\right) / N$ depends only on $x$ or that $f=\left(N_{x}-M_{y}\right) / M$ depends only on $y$ ?

When solving, we need only one of these to be true. We would choose the $\mu$ that would result in an easier solution.

Sidebar: In general, if $M d x+N d y=0$ is not exact but $\mu(x) M d x+\mu(x) N d y=0$ is exact, then $\frac{d}{d y}(\mu(x) \cdot M)=\frac{d}{d x}(\mu(x) \cdot N)$. (That is the test for exactness.) You could solve this to find $\mu(x)$. Khan Academy does this for a specific diff. eq. You could, theoretically at least, assume $\mu$ to be a function in both $x$ and $y$ and do the same thing. That would look like $\frac{d}{d y}(\mu(x, y) \cdot M)=\frac{d}{d x}(\mu(x, y) \cdot N)$ (Or assume $\mu$ to be a function in just $y$ and solve for it.)
Solving for $\mu$ in these equations can be very complicated. The problems we are given will be of the simpler forms discussed in Theorem 3.
expl 2: Solve the diff. eq. $\quad \bigcirc$


Determine $\mu(x)$ and proceed to the next page.


## Exploration of example 2: Justifying our use of $\boldsymbol{\mu}(\boldsymbol{x})$ :

We chose $\mu(x)=x^{-2}$ and not $\mu(x)=|x|^{-2}$ as truly came out in the calculation. Were we justified in doing so?

While you can justify it because $|x|^{2}=x^{2}$, we will focus on reasoning that would work if we had ended up with an odd exponent, like $\mu(x)=|x|^{-3}$ (where we could not simply say $|x|^{3}=x^{3}$ ).

Our goal is to find a function that, when multiplied in, will make the original equation exact. So, verify that the new equation (after multiplying by $\mu(x)=x^{-2}$ ) is exact. Here it is.
$x^{-2}\left(3 x^{2}+y\right) d x+x^{-2}\left(x^{2} y-x\right) d y=0$


Additional (Lost) Solutions: As we saw on page 1, the value that makes $\mu(x)=x^{-2}$ undefined may also be a solution. What value of $x$ are we talking about? Does it make the original diff. eq. true? If so, add that value to the solution as you wrote it above.
expl 3: Find the integrating factor in the form $x^{n} y^{m}$ and solve the diff. eq.
$(12+5 x y) d x+\left(6 x y^{-1}+3 x^{2}\right) d y=0$


First, check it for exactness. It will not be exact. Then multiply it by $x^{n} y^{m}$ and pull out $M$ and
$N$ from the new equation.

For this new equation to be exact, we want $M_{y}=N_{x}$. How does that help us find $n$ and $m$ in the integrating factor $x^{n} y^{m}$ ?



Worksheet: Integrating Factors Worksheet:
This will give you a bit of practice determining if an equation is separable, linear, exact, or if it has an integrating factor that is a function of $x$ or $y$ alone. Also, there is a non-exact equation to solve by the method of this section.

