Differential Equations

Class Notes

Solutions and Initial Value Problems (Section 1.2)

Our starting point and generic form:

The general form of an n^{th} order diff. eq. with x independent, y dependent, can be expressed

as $F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}\right) = 0$. Here *F* is a function that depends only on *x*, *y*, and the

 $\circ \bigcirc$

derivatives of y up to order n. We assume this equation holds for all x in an open interval I(a < x < b where a and b could be infinity).

Can we verify that a function is indeed a solution to a given diff. eq.?

Definition: Explicit solution: A function $\Phi(x)$, that when substituted for y into the diff. eq. satisfies the equation for all $x \in I$, is called an **explicit solution** to the diff. eq..

We will actually be solving differential equations later. For now we are merely verifying that a given function really is a solution to our diff. eq..

expl 1: Show that $\Phi(x) = e^x - x$ is an explicit solution to the following diff. eq. on the interval $(-\infty, \infty)$.

$$\frac{dy}{dx} + y^2 = e^{2x} + (1 - 2x)e^x + x^2 - 1$$
We use this $\Phi(x)$ as y.
What do we need to see if it
makes the equation true?

Definition: Implicit solution: A relation G(x, y) = 0 is said to be an **implicit solution** of a diff. eq. on the interval *I* if it defines one or more explicit solutions on *I*.

expl 2: Show that $xy^3 - xy^3 \sin(x) = 1$ is an implicit solution to the following diff. eq. on the interval $\left(0, \frac{\pi}{2}\right)$. $\frac{dy}{dx} = \frac{\left(x \cos x + \sin x - 1\right)y}{3(x - x \sin x)}$ First, solve the proposed solution for y or use implicit differentiation (if we know y is differentiable). \bigcirc

Does it make the diff. eq. true?

2

Hey, what about that interval? ... Huh? Oh yeah, right ...

We were told to show that $xy^3 - xy^3 \sin(x) = 1$ is an implicit solution to

 $\frac{dy}{dx} = \frac{\left(x\cos x + \sin x - 1\right)y}{3(x - x\sin x)}$ on the interval $\left(0, \frac{\pi}{2}\right)$. What that amounts to, after we show that the

function y does make the diff. eq. true, is that the x-values in this interval do not make either y

or $\frac{dy}{dx}$ undefined. (In general, we do *not* want y or $\frac{d^n y}{dx^n} = f\left(x, y, \frac{dy}{dx}, ..., \frac{d^{n-1}y}{dx^{n-1}}\right)$ to be undefined in this interval.) This is akin to showing that the solution $x = \frac{11}{4}$ not only makes the equation $\frac{3}{x-2} = 4$ true but does *not* make any part undefined.

In practice, let's find where y and $\frac{dy}{dx}$ are undefined. Those x-values should be excluded from the intervals over which the solution makes the diff. eq. true.

Now, we have found $y = (x - x \sin x)^{-\frac{1}{3}}$ and $\frac{dy}{dx} = \frac{\sin x + x \cos x - 1}{3(x - x \sin x)^{\frac{4}{3}}}$.

These are both undefined when $(x - x \sin x) = 0$. Solve this to find the x-values for which y and $\frac{dy}{dx}$ are undefined.

Definition: One-parameter family of solutions: A collection of all solutions of a diff. eq. which uses a constant such as $C \in \mathbb{R}$. (If there are two constants used, we call it a two-parameter family of solutions.)

expl 3: Verify that $x^2 + cy^2 = 1$ where $c \in \mathbb{R}$, $c \neq 0$, is a one-parameter family of implicit solutions to the following diff. eq.. Graph several solution curves on the same axes.

$$\frac{dy}{dx} = \frac{xy}{x^2 - 1}$$

Definition: Initial value problem: We will find the solution to an n^{th} order diff. eq. $F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, ..., \frac{d^n y}{dx^n}\right) = 0$ on an interval *I* that satisfies, at x_0 , the *n* initial conditions $y(x_0) = y_0, \quad \frac{dy}{dx}(x_0) = y_1, \quad ... \quad \frac{d^{n-1}y}{dx^{n-1}}(x_0) = y_{n-1}$. Here, $x_0 \in I$ and y_i are given constants.

Theorem 1: Existence and Uniqueness of Solution:

Consider the initial value problem $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$. If f and $\frac{\partial f}{\partial y}$ are continuous functions in some rectangle $R = \{(x, y) : a < x < b; c < y < d\}$ that contains some point (x_0, y_0) , then the initial value problem has a unique solution $\Phi(x)$ in some interval $x_0 - \delta < x < x_0 + \delta$ where $\delta \in \mathbb{R}^+$.

recognize delta?

expl 4: Determine whether Theorem 1 implies that the given initial value problem has a unique solution.

$$\frac{dy}{dt} - ty = \sin^2 t, \quad y(\pi) = 5$$
Rewrite diff. eq. in theorem's form to pick out $f(t, y)$. Then we find $\frac{\partial f}{\partial y}$. Are f and $\frac{\partial f}{\partial y}$ continuous around $(\pi, 5)$?

We will solve these initial value problems later.

Proving continuity in example 4: We said that the function $f(t, y) = ty + \sin^2 t$ was continuous around the point $(\pi, 5)$. Let's prove it.

Recall: From calculus, we know a function f(x, y) is **continuous** at (x_0, y_0) if $\lim_{(x,y)\to(x_0,y_0)} f(x, y) = f(x_0, y_0).$ A function is said to be continuous over an interval [a, b] if it is continuous at each point in the interval. This implies that $f(x_0, y_0)$ and the limit exists.

First, $f(\pi, 5) = 5\pi + \sin^2 \pi = 5\pi$.

Now we must determine if (with a change of variable) $\lim_{(t,y)\to(\pi,5)} f(t,y) = f(\pi,5)$. If we show this is true, then we can say f is continuous.

So, we need to find $\lim_{(t,y)\to(\pi,5)} f(t,y) = \lim_{(t,y)\to(\pi,5)} ty + \sin^2 t$. We do this by looking at f(t,y), approaching the point $(\pi, 5)$ from all directions.

First, find $\lim_{(\pi,y)\to(\pi,5)} ty + \sin^2 t$. (This approaches the point $(\pi, 5)$ along the vertical line $t = \pi$.)

Second, find $\lim_{(t,5)\to(\pi,5)} ty + \sin^2 t$. (This approaches the point $(\pi, 5)$ along the horizontal line y = 5.)

This helps visualize us approaching the point $(\pi, 5)$ along the vertical and horizontal lines. We will see how y = mx + b plays a role next.

Notice these two limits agree.

Third, we will show this limit has the same value, no matter the slanted line on which we approach. Any slanted line $(y - y_1 = m(t - t_1))$ through the point $(\pi, 5)$ has the equation $y - 5 = m(t - \pi)$ or $y = mt - m\pi + 5$. So, we find the following limit.

$$\lim_{\substack{t \to \pi \\ y=mt-m\pi+5}} ty + \sin^2 t = \lim_{\substack{t \to \pi \\ y=mt-m\pi+5}} t(mt-m\pi+5) + \sin^2 t = \lim_{t \to \pi} \left(mt^2 - mt\pi + 5t + \sin^2 t\right)$$

As we let t approach π , we see this limit is also 5π . Did you show it in the space above? Now, we can safely say that $\lim_{(t,y)\to(\pi,5)} f(t,y) = 5\pi$.

Therefore, we have shown that $\lim_{(t,y)\to(\pi,5)} f(t,y) = f(\pi,5)$ because both are 5π . Hence, the function f is continuous around $(\pi, 5)$.

Since $\frac{\partial f}{\partial y}$ was much simpler (in fact, $\frac{\partial f}{\partial y} = t$), we do *not* need so much work to show that it is continuous as well.

expl 5: Consider the initial value problem below. Explore it to show that the partial derivative of f(x, y) with respect to y is *not* continuous at the initial point. (In fact, it will *not* be defined.) Therefore, Theorem 1 will *not* apply. Further, show that both $\Phi_1(x) = \frac{25}{4}(x-3)^2$ and $\Phi_2(x) = 0$ are solutions. $\frac{dy}{dx} = 5y^{\frac{1}{2}}$, y(3) = 0When we cannot say Theorem 1 applies, we are saying that the solution, if it exists at all, is *not* unique. expl 6: Determine for which values of *m* the function $\Phi(x) = x^m$ is a solution to the diff. eq. below.

$$3x^{2}\left(\frac{d^{2}y}{dx^{2}}\right) + 11x\left(\frac{dy}{dx}\right) - 3y = 0$$

