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Differential Equations  
Class Notes 
Solutions and Initial Value Problems (Section 1.2)  

Our starting point and generic form: 
The general form of an  nth order diff. eq. with  x  independent,  y  dependent, can be expressed 

as  
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derivatives of  y  up to order  n. We assume this equation holds for all  x  in an open  
interval  I (a < x < b where  a  and  b  could be infinity).  

In many cases, we isolate 
n

n

d y

dx
 to get 

1

1
, , ,...,

n n

n n

d y dy d y
f x y

dx dx dx





 
  

 
.  

 

Definition: Explicit solution: A function  Φ(x), that when substituted for  y  into the diff. eq. 
satisfies the equation for all  xI, is called an explicit solution to the diff. eq..  

We will actually be solving differential equations later. For now we are merely verifying that a 
given function really is a solution to our diff. eq.. 

expl 1: Show that  Φ(x) = ex – x  is an explicit solution to the following diff. eq. on the interval  
(– ∞, ∞). 
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Can we verify that a 
function is indeed a solution 

to a given diff. eq.?  

Notice how we use 
upper and lower 

cases for  F  and  f.  

We use this  Φ(x)  as  y. 
What do we need to see if it 

makes the equation true?    
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Definition: Implicit solution: A relation  G(x, y) = 0  is said to be an implicit solution of a diff. 
eq. on the interval  I  if it defines one or more explicit solutions on  I. 

expl 2: Show that  3 3 sin( ) 1xy xy x    is an implicit solution to the following diff. eq. on the 

interval  0, 2
 . 
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First, solve the proposed 
solution for  y  or use 

implicit differentiation (if we 
know  y  is differentiable).  

Does it make the 
diff. eq. true?  

Remember that when we 
check to see if something is 

a solution, we cannot 
assume the equation is true. 

What does that mean?    
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Hey, what about that interval? … Huh? Oh yeah, right … 

We were told to show that 3 3 sin( ) 1xy xy x    is an implicit solution to
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 . What that amounts to, after we show that the 

function  y  does make the diff. eq. true, is that the  x-values in this interval do not make either  y  

or 
dy
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 undefined. (In general, we do not want  y  or 
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In practice, let’s find where  y  and  
dy

dx
 are undefined. Those  x-values should be excluded 

from the intervals over which the solution makes the diff. eq. true.  

Now, we have found  
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These are both undefined when  sin 0x x x  . Solve this to find the  x-values for which  y  and  

dy

dx
 are undefined.  

 

 

 

 

 

 

 

 

 

Are any of these troublesome  x-values in 

the interval  0, 2
 ? What if we were 

asked about the interval  0, ? 

This is akin to showing that the solution   

x = 11
4  not only makes the equation 

3
4

2x



true but does not make any part undefined.  
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Definition: One-parameter family of solutions:  A collection of all solutions of a diff. eq. 
which uses a constant such as  C . (If there are two constants used, we call it a two-
parameter family of solutions.) 

expl 3: Verify that  2 2 1x cy   where  c , 0c  , is a one-parameter family of implicit 

solutions to the following diff. eq.. Graph several solution curves on the same axes.  
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Let’s use implicit 
differentiation, 

solving for 
dy

dx
.  

If  2 2 1x cy  , 

then  2 2 1cy x   . 

To graph, solve 
for  y  and choose 

values for  c. 
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Definition: Initial value problem: We will find the solution to an  nth  order diff. eq.  
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Theorem 1: Existence and Uniqueness of Solution:  

Consider the initial value problem  ( , )
dy

f x y
dx

 , 0 0( )y x y . If  f  and 
f

y
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 are continuous 

functions in some rectangle  ( , ) : ;R x y a x b c y d      that contains some point  (x0, y0), 

then the initial value problem has a unique solution  Φ(x)  in some interval 0 0x x x      

where    .  

 

expl 4: Determine whether Theorem 1 implies that the given  
initial value problem has a unique solution. 
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We will solve these initial value problems later.  

Do you 
recognize delta? 

Rewrite diff. eq. in theorem’s 
form to pick out  f (t, y). Then 

we find  
f

y


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. Are f  and 
f
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continuous around  (π, 5)?  
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Proving continuity in example 4: We said that the function 2( , ) sinf t y ty t  was continuous 

around the point  (π, 5). Let’s prove it.  

 

Recall: From calculus, we know a function  f (x, y)  is continuous at  (x0, y0)  if 
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 . A function is said to be continuous over an interval  [a, b]  if it is 

continuous at each point in the interval. This implies that  f (x0, y0)  and the limit exists. 

 

First, 2( ,5) 5 sin 5f       . 

 

Now we must determine if (with a change of variable) 
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t y
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is true, then we can say  f  is continuous.  
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approaching the point  (π, 5)  from all directions.  

 

First, find 2

( , ) ( ,5)
lim sin
y

ty t
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 . (This 

approaches the point  (π, 5) along the vertical 
line  t = π.)  
 
 
 
 

 
This helps visualize us approaching the point  
(π, 5) along the vertical and horizontal lines. 
We will see how  y = mx + b  plays a role 
next. 

Second, find 2

( ,5) ( ,5)
lim sin

t
ty t


 . (This 

approaches the point  (π, 5) along the 
horizontal line  y = 5.) 
 
 
 
 

 

Notice these two limits agree.  
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Third, we will show this limit has the same value, no matter the slanted line on which we 
approach. Any slanted line (y – y1 = m(t – t1)) through the point  (π, 5)  has the equation 

5 ( )y m t     or  5y mt m   . So, we find the following limit.  
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As we let  t  approach  π, we see this limit is also 5π. Did you show it in the space above?  

Now, we can safely say that 
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Therefore, we have shown that 
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function  f  is continuous around  (π, 5).  

 

Since  f
y


  was much simpler (in fact, f ty

  ), we do not need so much work to show that it 

is continuous as well.  

  

That was a fun dip back into 
calculus. Let’s continue on 

our road to solving diff. eq’s.  
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expl 5: Consider the initial value problem below. Explore it to show that the partial derivative of   
f (x, y)  with respect to  y  is not continuous at the initial point. (In fact, it will not be defined.) 

Therefore, Theorem 1 will not apply. Further, show that both   2

1
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When we cannot say 
Theorem 1 applies, we are 

saying that the solution, if it 
exists at all, is not unique.  
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expl 6: Determine for which values of  m  the function  Φ(x) = xm  is a solution to the diff. eq. 
below. 
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Let  Φ(x) = xm  be the 
function  y. Then find 
dy/dx  and  d 2y/dx2.  

After substitution, 
you will end up with 
a quadratic equation.  


