Differential Equations

Class Notes
Solutions and Initial Value Problems (Section 1.2)

Our starting point and generic form:

The general form of an $n^{\text {th }}$ order diff. eq. with x independent, y dependent, can be expressed as $F\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0$. Here F is a function that depends only on x, y, and the derivatives of y up to order n. We assume this equation holds for all x in an open interval I ($a<x<b$ where a and b could be infinity).

In many cases, we isolate $\frac{d^{n} y}{d x^{n}}$ to get $\frac{d^{n} y}{d x^{n}}=f\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n-1} y}{d x^{n-1}}\right)$.

Definition: Explicit solution: A function $\Phi(x)$, that when substituted for y into the diff. eq. satisfies the equation for all $x \in I$, is called an explicit solution to the diff. eq..

We will actually be solving differential equations later. For now we are merely verifying that a given function really is a solution to our diff. eq..
expl 1: Show that $\Phi(x)=e^{x}-x$ is an explicit solution to the following diff. eq. on the interval $(-\infty, \infty)$.

$$
\frac{d y}{d x}+y^{2}=e^{2 x}+(1-2 x) e^{x}+x^{2}-1
$$

Definition: Implicit solution: A relation $G(x, y)=0$ is said to be an implicit solution of a diff. eq. on the interval I if it defines one or more explicit solutions on I.
expl 2: Show that $x y^{3}-x y^{3} \sin (x)=1$ is an implicit solution to the following diff. eq. on the interval $(0, \pi / 2)$.
$\frac{d y}{d x}=\frac{(x \cos x+\sin x-1) y}{3(x-x \sin x)}$

Hey, what about that interval? ... Huh? Oh yeah, right ...
We were told to show that $x y^{3}-x y^{3} \sin (x)=1$ is an implicit solution to $\frac{d y}{d x}=\frac{(x \cos x+\sin x-1) y}{3(x-x \sin x)}$ on the interval $(0, \pi / 2)$. What that amounts to, after we show that the function y does make the diff. eq. true, is that the x-values in this interval do not make either y or $\frac{d y}{d x}$ undefined. (In general, we do not want y or $\frac{d^{n} y}{d x^{n}}=f\left(x, y, \frac{d y}{d x}, \ldots, \frac{d^{n-1} y}{d x^{n-1}}\right)$ to be undefined in this interval.)

In practice, let's find where y and $\frac{d y}{d x}$ are undefined. Those x-values should be excluded from the intervals over which the solution makes the diff. eq. true.

Now, we have found $y=(x-x \sin x)^{-1 / 3}$ and $\frac{d y}{d x}=\frac{\sin x+x \cos x-1}{3(x-x \sin x)^{4 / 3}}$.
These are both undefined when $(x-x \sin x)=0$. Solve this to find the x-values for which y and $\frac{d y}{d x}$ are undefined.

Definition: One-parameter family of solutions: A collection of all solutions of a diff. eq. which uses a constant such as $C \in \mathbb{R}$. (If there are two constants used, we call it a twoparameter family of solutions.)
expl 3: Verify that $x^{2}+c y^{2}=1$ where $c \in \mathbb{R}, c \neq 0$, is a one-parameter family of implicit solutions to the following diff. eq.. Graph several solution curves on the same axes.
$\frac{d y}{d x}=\frac{x y}{x^{2}-1}$

To graph, solve for y and choose values for c.

Definition: Initial value problem: We will find the solution to an $n^{\text {th }}$ order diff. eq. $F\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0$ on an interval I that satisfies, at x_{0}, the n initial conditions $y\left(x_{0}\right)=y_{0}, \frac{d y}{d x}\left(x_{0}\right)=y_{1}, \ldots \frac{d^{n-1} y}{d x^{n-1}}\left(x_{0}\right)=y_{n-1}$. Here, $x_{0} \in I$ and y_{i} are given constants.

Theorem 1: Existence and Uniqueness of Solution:

Consider the initial value problem $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$. If f and $\frac{\partial f}{\partial y}$ are continuous functions in some rectangle $R=\{(x, y): a<x<b ; c<y<d\}$ that contains some point (x_{0}, y_{0}), then the initial value problem has a unique solution $\Phi(x)$ in some interval $x_{0}-\delta<x<x_{0}+\delta$ where $\delta \in \mathbb{R}^{+}$.

expl 4: Determine whether Theorem 1 implies that the given initial value problem has a unique solution.
$\frac{d y}{d t}-t y=\sin ^{2} t, \quad y(\pi)=5$

Rewrite diff. eq. in theorem's form to pick out $f(t, y)$. Then we find $\frac{\partial f}{\partial y}$. Are f and $\frac{\partial f}{\partial y}$ continuous around $(\pi, 5)$?

We will solve these initial value problems later.

Proving continuity in example 4: We said that the function $f(t, y)=t y+\sin ^{2} t$ was continuous around the point $(\pi, 5)$. Let's prove it.

Recall: From calculus, we know a function $f(x, y)$ is continuous at $\left(x_{0}, y_{0}\right)$ if $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$. A function is said to be continuous over an interval [a,b] if it is continuous at each point in the interval. This implies that $f\left(x_{0}, y_{0}\right)$ and the limit exists.

First, $f(\pi, 5)=5 \pi+\sin ^{2} \pi=5 \pi$.

Now we must determine if (with a change of variable) $\lim _{(t, y) \rightarrow(\pi, 5)} f(t, y)=f(\pi, 5)$. If we show this is true, then we can say f is continuous.

So, we need to find $\lim _{(t, y) \rightarrow(\pi, 5)} f(t, y)=\lim _{(t, y) \rightarrow(\pi, 5)} t y+\sin ^{2} t$. We do this by looking at $f(t, y)$, approaching the point $(\pi, 5)$ from all directions.

First, find $\lim _{(\pi, y) \rightarrow(\pi, 5)} t y+\sin ^{2} t$. (This approaches the point $(\pi, 5)$ along the vertical line $t=\pi$.)

Second, find $\lim _{(t, 5) \rightarrow(\pi, 5)} t y+\sin ^{2} t$. (This approaches the point $(\pi, 5)$ along the horizontal line $y=5$.)

This helps visualize us approaching the point $(\pi, 5)$ along the vertical and horizontal lines. We will see how $y=m x+b$ plays a role next.

Notice these two limits agree.

Third, we will show this limit has the same value, no matter the slanted line on which we approach. Any slanted line $\left(y-y_{1}=m\left(t-t_{1}\right)\right)$ through the point $(\pi, 5)$ has the equation $y-5=m(t-\pi)$ or $y=m t-m \pi+5$. So, we find the following limit.
$\lim _{\substack{t \rightarrow \pi \\ y=m t-m \pi+5}} t y+\sin ^{2} t=\lim _{\substack{t \rightarrow \pi \\ y=m t-m \pi+5}} t(m t-m \pi+5)+\sin ^{2} t=\lim _{t \rightarrow \pi}\left(m t^{2}-m t \pi+5 t+\sin ^{2} t\right)$

As we let t approach π, we see this limit is also 5π. Did you show it in the space above?
Now, we can safely say that $\lim _{(t, y) \rightarrow(\pi, 5)} f(t, y)=5 \pi$.

Therefore, we have shown that $\lim _{(t, y) \rightarrow(\pi, 5)} f(t, y)=f(\pi, 5)$ because both are 5π. Hence, the function f is continuous around $(\pi, 5)$.

Since $\partial f / \partial y$ was much simpler (in fact, $\partial f / \partial y=t$), we do not need so much work to show that it is continuous as well.

expl 5: Consider the initial value problem below. Explore it to show that the partial derivative of $f(x, y)$ with respect to y is not continuous at the initial point. (In fact, it will not be defined.) Therefore, Theorem 1 will not apply. Further, show that both $\Phi_{1}(x)=\frac{25}{4}(x-3)^{2}$ and $\Phi_{2}(x)=0$ are solutions.
$\frac{d y}{d x}=5 y^{1 / 2}, \quad y(3)=0$

expl 6: Determine for which values of m the function $\Phi(x)=x^{m}$ is a solution to the diff. eq. below.
$3 x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+11 x\left(\frac{d y}{d x}\right)-3 y=0$

