Can we verify that a
function is indeed a solution
to a given diff. eq.?

Differential Equations 8
Class Notes 0o O O
Solutions and Initial Value Problems (Section 1.2)

Our starting point and generic form:

The general form of an n™ order diff. eq. with x independent, y dependent, can be expressed
2 n

as F x,y,ﬂ,d—);,...,d—y

dx dx dx"

derivatives of y up to order n. We assume this equation holds for all x in an open

interval I (a <x < b where a and b could be infinity).

] =0. Here F is a function that depends only on x, y, and the

Notice how we use
upper and lower
cases for F and f.

. d}’l n
In many cases, we isolate ) get 4y =f|x,y,—,
dx" dx" dx

Definition: Explicit solution: A function @(x), that when substituted for y into the diff. eq.
satisfies the equation for all xe/, is called an explicit solution to the diff. eq..

We will actually be solving differential equations later. For now we are merely verifying that a
given function really is a solution to our diff. eq..

expl 1: Show that @(x)=e*—x is an explicit solution to the following diff. eq. on the interval

(— o0, ). o O
d_y+ 2 2x 1_2 x 2_1 O
tyi=e +(1-2x)e" +x

We use this @(x) as y.
What do we need to see if it
makes the equation true?



Definition: Implicit solution: A relation G(x, y) =0 is said to be an implicit solution of a diff.
eq. on the interval [ if it defines one or more explicit solutions on /.

expl 2: Show that xy’ —x)’sin(x) =1 is an implicit solution to the following diff. eq. on the

interval (0, % ) .

dy _ (xcosx+sinx—1)y

OOO

dx 3(x—xsinx)

First, solve the proposed
solution for y or use
implicit differentiation (if we

know y is differentiable). &
@)

Does it make the
diff. eq. true?

Remember that when we
check to see if something is
a solution, we cannot
assume the equation is true.
What does that mean?



Hey, what about that interval? ... Huh? Oh yeah, right ...
We were told to show that x)° —x)’sin(x) =1 is an implicit solution to

d xcosx+sinx—1
ay _ ( : )y on the interval (O, % ) What that amounts to, after we show that the
dx 3(x—xsinx)

function y does make the diff. eq. true, is that the x-values in this interval do not make either y

d n n—1
or L4 undefined. (In general, we do not want y or Z Y _ [x, , & "y

dx .

@)
in this interval.) O ‘/

to be undefined

This is akin to showing that the solution

=4

xX= l% not only makes the equation —

true but does not make any part undefined.

In practice, let’s find where y and % are undefined. Those x-values should be excluded
x

from the intervals over which the solution makes the diff. eq. true.

dy sinx+xcosx—1

dx 3(x—xsin x)% .

Now, we have found y = (x —xsin x)% and

These are both undefined when (x—xsinx)=0. Solve this to find the x-values for which y and

d_y are undefined.

dx

Are any of these troublesome x-values in
the interval (O, % ) ? What if we were

asked about the interval (0, ) ?



Definition: One-parameter family of solutions: A collection of all solutions of a diff. eq.
which uses a constant such as C € R . (If there are two constants used, we call it a two-
parameter family of solutions.)

expl 3: Verify that x* +cy” =1 where ceR, c¢#0, is a one-parameter family of implicit
solutions to the following diff. eq.. Graph several solution curves on the same axes.
v__»
dx  x*-1

Let’s use implicit
differentiation,

solving for Q

dx

To graph, solve
for y and choose
values for c.



Definition: Initial value problem: We will find the solution to an n™ order diff. eq.

2 n
Flay 24y 4
dx dx dx”

j: 0 on an interval [ that satisfies, at xo, the » initial conditions

n—1

Y

F(xo) =y,,.Here, xo € Tand y: are given constants.

d
V(X)) = Yp» d_i(xo) =V

Theorem 1: Existence and Uniqueness of Solution:

o

Consider the initial value problem % = f(x,y), ¥(x,)=y,.If f and ™ are continuous
X

functions in some rectangle R = {(x, y)a<x<byc<y<d } that contains some point (xo, y0),

then the initial value problem has a unique solution @(x) in some interval x,—d <x<x,+3J

o)
where S eR". O

Do you
recognize delta?

expl 4: Determine whether Theorem 1 implies that the given
initial value problem has a unique solution.

Yv_ ty=sin’t, y(r)=5 OOQ

dt

Rewrite diff. eq. in theorem’s
form to pick out f'(z, y). Then

we find g Are f and 4
oy oy

continuous around (7, 5)?

We will solve these initial value problems later.

5



Proving continuity in example 4: We said that the function f(z, y) =ty +sin’ f was continuous

around the point (m, 5). Let’s prove it.

Recall: From calculus, we know a function f(x, y) is continuous at (xo, yo) if
lim  f(x,y)= f(x,,y,). A function is said to be continuous over an interval [a, b] ifit1is

(x,»)>(x9.¥9)

continuous at each point in the interval. This implies that f(xo, o) and the limit exists.

First, f(z,5)=5x+sin’ 7z =57x.

Now we must determine if (with a change of variable) ( 1)111(1 ) f(t,y)= f(x,5).1f we show this

is true, then we can say f is continuous.

So,weneedto find lim f(z,y)= lim t#y+sin’¢. We do this by looking at f(¢,y),

(t,y)>(7,5) (t,y)>(7,5)

approaching the point (m, 5) from all directions.

First, find lim #y+sin’¢. (This

(7.)>(7.5)
approaches the point (m, 5) along the vertical A y=mx+b
line r=m.)
< : » y=5
(pi, 5)
Second, find ( S%ir? 5)ty+sin2 t . (This
approaches the point (m, 5) along the t = pi

horizontal line y=35.)

This helps visualize us approaching the point
(m, 5) along the vertical and horizontal lines.
We will see how y = mx + b plays arole
next.

Notice these two limits agree.



Third, we will show this limit has the same value, no matter the slanted line on which we
approach. Any slanted line (y — y1 = m(t — #1)) through the point (=, 5) has the equation
y=5=m(t—x) or y=mt—mnr+5. So, we find the following limit.

lim #y+sin’t= lim t(mt—mz+5)+sin’t= lirn(mt2 — mtm + 5t +sin’ t)
to>rx tor t>r
y=mt—ma+5 y=mt—ma+5

As we let ¢ approach w, we see this limit is also 5m. Did you show it in the space above?

Now, we can safely say that lim f(¢,y)=5x.

(t.y)>(7.5)

Therefore, we have shown that ( 1)1n(1 ) f(t,y)= f(x,5) because both are 5n. Hence, the
t,}’ —> (7,

function f is continuous around (m, 5).

Since a%y was much simpler (in fact, 8%} =t), we do not need so much work to show that it

1s continuous as well.

That was a fun dip back into
calculus. Let’s continue on
our road to solving diff. eq’s.



expl 5: Consider the initial value problem below. Explore it to show that the partial derivative of
f(x,y) with respect to y is not continuous at the initial point. (In fact, it will not be defined.)

. 2
Therefore, Theorem 1 will not apply. Further, show that both @, (x)===(x- 3)2 and ®,(x)=0
e

5
4
O
When we cannot say

Theorem 1 applies, we are
saying that the solution, if it
exists at all, is nof unique.

are solutions.

D5y y3)=0
dx



expl 6: Determine for which values of m the function @(x) =x™ is a solution to the diff. eq.
below.

X

dzy

3x? (
d

2

ol

dy

X

j—3y:0

/ Let @(x)=x" be the
function y. Then find
dy/dx and d?yldx’.

After substitution,
you will end up with
a quadratic equation.



