Differential Equations Class Notes

Solving Initial Value Problems with Laplace Transforms (Section 7.5)
We have solved these equations before. However, we were required to find a general solution first and then use the initial values to narrow down that solution. With Laplace transforms, we do not need to obtain the general solution first. How would we do that?

We will take the Laplace transform of both sides of our diff. eq.. Do we have any Laplace properties that involve the initial values that can be put to use. Yes we do!

If we are given a diff. eq. and a few initial values (always for $t=0$ or we would need to use a translation to make that so), we can use these properties (from section 7.3) copied below.

$$
\begin{aligned}
& \mathscr{L}\left\{f^{\prime}\right\}(s)=s \mathscr{L}\{f\}(s)-f(0) \\
& \mathscr{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathscr{L}\{f\}(s)-s f(0)-f^{\prime}(0) \\
& \mathscr{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathscr{L}\{f\}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)
\end{aligned}
$$

Method for Solving Differential Equations with Laplace Transforms:

1. Take the Laplace transform of both sides of the equation.
2. Use the above properties and the initial values given to you to obtain an equation in which you can isolate $\mathcal{L}\{y\}$ (also known as $Y(s)$ or $\mathcal{L}\{f\}$ in the above properties).
3. Determine the inverse Laplace transform of the solution by looking it up in a table. You may need partial fraction decomposition or some other device to get there.
4. Dance like no one is watching.

We will tacitly assume the solution is a piecewise continuous function on $[0, \infty)$ and of exponential order. Once we have our solution, we can certainly verify those assumptions.

expl 1: Solve the initial value problem using the method of Laplace transforms.

$$
y^{\prime \prime}+6 y^{\prime}+5 y=12 e^{t} \quad y(0)=-1, \quad y^{\prime}(0)=7
$$

expl 2: Solve the initial value problem using the method of Laplace transforms.

$$
y^{\prime \prime}+4 y=4 t^{2}-4 t+10 \quad y(0)=0, \quad y^{\prime}(0)=3
$$

Differential Equations Involving Piecewise Functions:

To deal with these, we will use the definition of a Laplace transform involving an integral which is this bad boy.
$F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$

expl 3: Solve for $Y(s)$, the Laplace transform of the solution $y(t)$ to this initial value problem. $y^{\prime \prime}-y=g(t) \quad y(0)=1, \quad y^{\prime}(0)=2$
where $g(t)= \begin{cases}1, & t<3 \\ t, & t>3\end{cases}$

Solving Higher-Order Differential Equations with Laplace:

You will be asked to solve a third-order diff. eq.. It is done in the same manner as we have seen. You may need polynomial long division (to factor a cubic expression) and partial fraction decomposition. Have fun. Dance much.

