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Differential Equations  
Class Notes 
Introduction: The Mass-Spring Oscillator (Section 4.1)  

Consider a spring attached to a wall with a mass on the other end. Below I have drawn this 
situation. 

Newton’s Second Law,  F = ma, can be 
thought of as a second-order diff. eq. since 
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  where  y(t)  is the position (or 

motion) function for the mass.   

 
If the spring is unstretched and the inertial mass is still, then the system is at equilibrium. When 
the mass is moved (along the floor), the spring is compressed or stretched and it exerts a force on  
m  that resists the displacement.  

 

For most springs, this force is directly proportional to the displacement  y  and is thus given by  
Fspring =  – ky  where  k > 0 is known as the stiffness and the negative sign reflects the opposing 
nature of the force. (This is Hooke’s Law and is only valid for sufficiently small displacements.)  

 

We also have friction,  Ffriction =  dyb bydt
    where  0b   is the damping coefficient. It’s 

negative, again, because it opposes the motion.  

 

Other forces are considered external. For now, we will simply label these as  Fext.  

 

So, now we have  F = ma = extmy ky by F     . Isolating the external force gives us a diff. eq. 

we can solve,  extmy by ky F    . We will solve this for  y  to derive a function for the motion 

(position) of the mass.  

 

Let’s slide into this by first verifying a solution. We will later move on to solving these equations 
for ourselves.  

We will explore applications 
that result in linear, second-

order diff. eqs. 
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expl 1: Verify that the exponentially damped sinusoid   3( ) sin 3ty t e t    is a solution to  

extmy by ky F      if  Fext (t) = 0,  m = 1,  b = 6, and  k = 12. What is the limit of this solution 

as  t  ?  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A sinusoid is a curve 
that has the form of a 

sine wave.  

First, put the values for  m, 
b, and  k  in place to get 

our spring’s diff. eq.  

Find y  and  y . Does 

the proposed solution 
make our diff. eq. true?  
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Definition: Linear, Second-order Differential Equation: an equation of the form  
( )ay by cy f t     where  y(t)  is an unknown function,  , ,a b c , and  f (t)  is a known 

function.  

Of course, we see this in the mass-spring application as  extmy by ky F    .  

 

Synchronous Solutions:  

Now, if a mass-spring system is driven by an external force that is sinusoidal at the angular 
frequency     (omega), then the system may be erratic at first but will eventually respond in 
“sync” with the driver and oscillate at the same frequency.  

Examples of systems vibrating in synchronization with their drivers are sound system speakers, 
cyclists bicycling over railroad tracks, and ocean tides driven by the periodic pull of the moon.  

Systems can be very sensitive to the particular frequency     at which they are driven – like 
crystal shattering from a musical note or wind taking down a bridge.  

 

 

expl 2: Find a synchronous solution of the form     cos sinA t B t     to the given forced 

oscillator equation using the method of the book’s example 4 to solve for  A  and  B. 

 2 5 50sin 5 , 5y y y t        

 

 

 

 

 

 

Upper case omega:    
Lower case omega:    

Plan: Let     cos siny A t B t    . 

Then find  y   and y , plugging them 

into the diff. eq. and solve for  A  and  
B  with a system of equations. 


