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Differential Equations  
Class Notes 
Auxiliary Equations with Complex Roots (Section 4.3)  

In the previous section, we put our mass-spring oscillators on hold to study only exponential 
solutions to the linear, second-order constant coefficient equations. Here, we see that these mass-
spring systems can give rise to an auxiliary equation that has complex roots.  

 

Rationale for Solutions:  

For the linear, second-order diff. eq.  0ay by cy    , we have its auxiliary equation   

ar2 + br + c = 0. When b2 – 4ac < 0, the equation has two complex roots 
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We will call these roots  1r i     and  2r i   , defining  2
b

a    and  
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By these definitions, we see that  α  and  β  are real numbers.      

 

From the previous section, the solutions to our diff. eq. are    1
1

r ty t e  and   2
2

r ty t e . 

Using the values we have developed for our roots, these solutions are now in the form  

   
1

i ty t e    and    
2

i ty t e   . 

 

We can use the Maclaurin series and Euler’s formula (described in the book) to further rewrite 

our solutions. We now have         1 cos sini t ty t e e t i t        and 

        2 cos sini t ty t e e t i t       . 

 

 

Finishing this out, we can say that       1 1 2 2y t c y t c y t      is a general solution to the diff. 

eq.  0ay by cy    .  

 

Our quadratic auxiliary equation 
may have a negative discriminant.  

These solutions involve complex 
numbers. Do they have to?   
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As the thought bubble at the bottom of the previous page ponders, we would like to find real-
valued functions that are solutions to our diff. eq.. In fact, we have this lemma.  

Lemma 2: Real Solutions Derived from Complex Solutions:  

Let       z t u t i v t     be a solution to  0ay by cy    , where  a, b, and  c  are real 

numbers. Then the real part (which is  u(t)) and the imaginary part (which is  v(t)) are real-valued 
solutions to the diff. eq..   

 

This leads to our main theorem.  

Theorem: Complex Conjugate Roots:  
If the auxiliary equation has complex roots  i  , then two linearly independent solutions to  

0ay by cy      are     1 costy t e t    and     2 sinty t e t  .  

A general solution is given by       1 2cos sint ty t c e t c e t     where  c1  and  c2  are 

real constants.  

 

expl 1: The auxiliary equation for this diff. eq. has complex roots. Find a general solution.  
4 7 0y y y     

 

 

 

 

 

 

 

 

 

 

 

A fairly straight-forward 
proof is provided in the book.  
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expl 2: Solve the initial value problem. 
9 0, (0) 1, (0) 1y y y y      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solve for the general 
solution. Then use the initial 
values to find the constants.  

Can you check 
your solution?  
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Vibrating Springs without Damping: 

expl 3: A vibrating spring without damping can be modeled by the diff. eq.  0my by ky    . 

By taking  b = 0  because there is no damping, this equation becomes  0my ky   .  

a.) If  m = 10 kg,  k = 250 kg/sec2,  y(0) = 0.3 m, and (0) 0.1y    m/sec, find the equation of 

motion for this undamped vibrating spring.  
b.) After how many seconds will the mass in part a first cross the equilibrium point?  
c.) When the equation of motion is of the form   

     1 2cos sint ty t c e t c e t    , the motion is said to be  

oscillatory with frequency  2


 . Find the frequency of oscillation 

for the spring system in part a.  

 

 

 

 

 

 

Equilibrium 
means  y = 0.   


