Differential Equations Class Notes

Nonhomogeneous Equations: The Method of Undetermined Coefficients (Section 4.4)
We have learned how to solve $a y^{\prime \prime}+b y^{\prime}+c y=f(t)$ where $f(t)=0$. But what if this $f(t)$ is not zero? In this section, this nonhomogeneity will be a single term of a certain type. It may seem crazy but we will guess at solutions to these equations. With some old-fashioned intuition, we can come up with a particular solution out of the infinite solutions that are out there.

Rationale and Method for Nonhomogeneous Equations:

Think about the equation $y^{\prime \prime}+3 y^{\prime}+2 y=3 t$. We must find a function $y(t)$ such that $y^{\prime \prime}+3 y^{\prime}+2 y$ is a linear function of t (in this case, $3 t$). What kind of function would fit? Perhaps a linear one?

Try $y(t)=A t$ (where A is a real number). We would calculate $y^{\prime}=A$ and $y^{\prime \prime}=0$. Put that all into the original equation and see if that works. Do you see a contradiction?

So, it does not work to simply use $y(t)=A t$. Let's get a little more complicated in our guess. We'll try $y(t)=A t+B$ (where A and B are real numbers). Calculate y^{\prime} and $y^{\prime \prime}$ and see what you get when you put those into the original equation.

This is called the method of undetermined coefficients because we assume the solution to be of a certain type but with unknown (or, yet to be determined) coefficients.

Method for a Certain Type of Nonhomogeneous Linear Equation:

For the equation $a y^{\prime \prime}+b y^{\prime}+c y=C t^{m}$ where $m=0,1,2, \ldots$, we guess a particular solution in the form $y_{p}(t)=A_{m} t^{m}+\ldots+A_{1} t+A_{0}$. These coefficients A_{i} are the undetermined coefficients we will find with a system of linear equations. In fact, we will solve a system of $m+1$ linear equations in $m+1$ unknowns.

When 0 is a root of the auxiliary equation, we have problems we will see later.

Note: We must retain all of the powers of $t^{m}, t^{m-1}, \ldots t^{0}$ in the proposed solution even though they may not appear in the nonhomogeneity $f(t)$. expl 1: Find a particular solution to the diff. eq.. $2 x^{\prime}+x=3 t^{2}$

Different Types of Equations:

That is all well and good but that only covers one type of equation we will encounter. What about $y^{\prime \prime}+3 y^{\prime}+2 y=f(t)$ where $f(t)=10 e^{3 t}$ or $f(t)=2 \sin 5 t$?

In the case of the above simple exponential nonhomogeneity, we will find that the function $y(t)=A e^{3 t}$ will suffice. (Try it out!) When $f(t)$ gets more complicated, we will need to get more creative.

In the case of $f(t)=2 \sin 5 t$, we need to remember that the derivative of sine is cosine. That implies the solution would include both sines and cosines, perhaps in the form $y(t)=A \sin 5 t+B \cos 5 t$.

Roots of Auxiliary Equations and Solutions to Nonhomogeneous Equations:

The examples so far have worked out. (Phew!) But there are equations that will yield nonsensical solutions and the problems are rooted (ah, a pun!) in the related auxiliary equations. Let's explore.
expl 2: Consider the diff. eq. $y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{-2 t}$ and its associated auxiliary equation $r^{2}+3 r+2=0$. First, find the roots of the auxiliary equation. Then, show that the proposed solution $y(t)=A e^{-2 t}$ cannot be used to find a solution to the diff. eq. $y^{\prime \prime}+3 y^{\prime}+2 y=10 e^{-2 t}$.

The problem that we are encountering here is dealt with a somewhat cumbersome theorem.

Method of Undetermined Coefficients for Certain Single-Term Nonhomogeneities:

To find a particular solution to the diff. eq. $a y^{\prime \prime}+b y^{\prime}+c y=C t^{m} e^{r t}$ where m is a nonnegative integer, use the form $y_{p}(t)=t^{s}\left(A_{m} t^{m}+\ldots+A_{1} t+A_{0}\right) e^{r t}$. We use the following values for s.
i.) Use $s=0$ if r is not a root of the associated auxiliary equation.
ii.) Use $s=1$ if r is a simple root of the associated auxiliary equation.
iii.) Use $s=2$ if r is a double root of the associated auxiliary equation.

To find a particular solution to the diff. eq.

$$
a y^{\prime \prime}+b y^{\prime}+c y=\left\{\begin{array}{c}
C t^{m} e^{\alpha t} \cos \beta t \\
O R \\
C t^{m} e^{\alpha t} \sin \beta t
\end{array} \text { where } \beta\right. \text { is }
$$

non-zero, use the form

$$
y_{p}(t)=t^{s}\left(A_{m} t^{m}+\ldots+A_{1} t+A_{0}\right) e^{\alpha t} \cos \beta t+t^{s}\left(B_{m} t^{m}+\ldots+B_{1} t+B_{0}\right) e^{\alpha t} \sin \beta t
$$

We use the following values for s.
iv.) Use $s=0$ if $\alpha+i \beta$ is not a root of the associated auxiliary equation.
v.) Use $s=1$ if $\alpha+i \beta$ is a simple root of the associated auxiliary equation.
expl 3: Decide if the method shown here can be used to solve the following equations. Explain.
a.) $y^{\prime \prime}+2 y^{\prime}-y=t^{-1} e^{t}$
$\circ \circ$

b.) $2 y^{\prime \prime}(x)-6 y^{\prime}(x)+y(x)=\frac{\sin x}{e^{4 x}}$
c.) $y^{\prime \prime}+2 y^{\prime}-y=4 x \sin ^{2} x+4 x \cos ^{2} x$
expl 4: Find a particular solution to the diff. eq. below. $y^{\prime \prime}-y^{\prime}+9 y=3 \sin (3 t)$

expl 5: Find a particular solution to the diff. eq. below.

$$
x^{\prime \prime}-4 x^{\prime}+4 x=t e^{2 t}
$$

Solving Higher-Order Linear Nonhomogeneous Equations:

We can extend our method for equations such as $2 y^{\prime \prime \prime}+3 y^{\prime \prime}+y^{\prime}-4 y=e^{-t}$ or $y^{(4)}-3 y^{\prime \prime}-8 y=\sin t$. We simply have to determine the auxiliary equation (using r^{3} for $y^{\prime \prime \prime}$, etc.) and determine if r (from the term $\left.e^{r t}\right)$ or $\alpha+i \beta\left(\right.$ from $\left.e^{\alpha t} \sin (\beta t)\right)$ is a root.
expl 6: Find a particular solution to the higher-order diff. eq. below.
$2 y^{\prime \prime \prime}+3 y^{\prime \prime}+y^{\prime}-4 y=e^{-t}$

