

The Superposition Principle and Undetermined Coefficients Revisited (Section 4.5)

We will find general solutions and solve initial value problems involving nonhomogeneous diff. eqs.. We will start with our fundamental theorem.

Theorem 3: The Superposition Principle:

Let y_1 be a solution to the diff. eq. $ay'' + by' + cy = f_1(t)$. Let y_2 be a solution to the diff. eq. $ay'' + by' + cy = f_2(t)$. Then for the diff. eq. $ay'' + by' + cy = k_1f_1(t) + k_2f_2(t)$ (where k_1 and k_2 are any constants), we know that $k_1y_1 + k_2y_2$ will be a solution.

The book provides the tiniest proof

expl 1: Through the miracle that is a math book, we know that $y_1(t) = (\frac{1}{4})\sin(2t)$ is a solution to the diff. eq. $y'' + 2y' + 4y = \cos(2t)$. Also, we are given that $y_2(t) = \frac{t}{4} - \frac{1}{8}$ is a solution to the diff. eq. y'' + 2y' + 4y = t. Use the superposition principle to find solutions to the following. a.) $y'' + 2y' + 4y = 2t - 3\cos(2t)$

b.) y'' + 2y' + 4y = 5t

We can also use the superposition principle to find a **general** solution to ay'' + by' + cy = f(t)by using the fact that a particular solution to it is y_p and that the general solution to ay'' + by' + cy = 0 is $c_1y_1 + c_2y_2$ (where y_1 and y_2 are solutions from a previous section). Our next theorem spells this out for initial value problems.

Theorem 4: Existence and Uniqueness: Nonhomogeneous Case:

For any real numbers $a (a \neq 0)$, b, c, t_0, Y_0 , and Y_1 , suppose $y_p(t)$ is a particular solution to ay'' + by' + cy = f(t) in an interval I containing t_0 and that $y_1(t)$ and $y_2(t)$ are linearly independent solutions to the associated homogeneous equation ay'' + by' + cy = 0 in I. Then there exists a unique solution in I to the initial value problem $ay'' + by' + cy = f(t), y(t_0) = Y_0, y'(t_0) = Y_1$. This solution is (drum roll please) $y(t) = y_p(t) + c_1y_1(t) + c_2y_2(t)$ using the appropriate choice of the constants c_1 and c_2 .

expl 2: Given the nonhomogeneous equation with a particular solution below, find a general solution.

Next, we will see how to solve the type of equation where the nonhomogeneity f(t) follows a specific form, similar to what we saw in a previous section.

Method of Undetermined Coefficients for Certain Nonhomogeneities Involving Polynomials (Revisited):

To find a particular solution to the diff. eq. $ay'' + by' + cy = P_m(t)e^{rt}$ where $P_m(t)$ is a polynomial of degree *m*, use the form $y_p(t) = t^s (A_m t^m + ... + A_1 t + A_0)e^{rt}$. We use the following values for *s*.

- i.) Use s = 0 if r is not a root of the associated auxiliary equation.
- ii.) Use s = 1 if r is a *simple* root of the associated auxiliary equation.
- iii.) Use s = 2 if r is a *double* root of the associated auxiliary equation.

To find a particular solution to the diff. eq.

 $ay'' + by' + cy = P_m(t)e^{\alpha t} \cos \beta t + Q_n(t)e^{\alpha t} \sin \beta t$ where β is non-zero, and where $P_m(t)$ is a polynomial of degree *m* and $Q_n(t)$ is a polynomial of degree *n*, use the form

$$y_{p}(t) = t^{s} \left(A_{k} t^{k} + \dots + A_{1} t + A_{0} \right) e^{\alpha t} \cos \beta t + t^{s} \left(B_{k} t^{k} + \dots + B_{1} t + B_{0} \right) e^{\alpha t} \sin \beta t \, .$$

Here, k is the larger of m and n. We use the following values for s.

iv.) Use s = 0 if $\alpha + i\beta$ is *not* a root of the associated auxiliary equation. v.) Use s = 1 if $\alpha + i\beta$ is a *simple* root of the associated auxiliary equation.

The first solution here is the same as given in the previous section. The second differs only by its use of k.

expl 3: Find a general solution to the diff. eq. below. $y'' - 2y' - 3y = 3t^2 - 5$

Solve the auxiliary equation to find the general solution needed in Theorem 4. Identify m and r to find the particular solution from above. What will we use for s?

 \bigcirc

(extra room for work)

Derivative Calculator:

There are times when our particular solution $y_p(t)$ will be nasty and finding its derivatives will be onerous. If that happens, feel free to use a derivative calculator online. Here are some I found.

https://www.derivative-calculator.net/

https://www.wolframalpha.com/calculators/derivative-calculator

But *don't* overuse them so your brain does not mush up.

 $^{\circ}$

Initial Value Problems:

expl 4: Find the solution to this initial value problem.

y'' = 6t, y(0) = 3, y'(0) = -1A *double* root for the aux. eqn. will set up a general solution (with c_1 and c_2) for the related homogeneous eqn.. Then use method from page 3 to write particular solution with coefficients. Use diff. eq. to determine values of coefficients. Finish by finding c_1 and c_2 using the initial values.

What if the nonhomogeneity is not one of the types mentioned?

We can break up the right-side nonhomogeneity f(t) if needed and use the Superposition Principle to cobble together a particular solution to more complicated diff. eqs..

We may also need to use such gems as the trig identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.

expl 5: Determine the form of a particular solution for the diff. eq.. Do *not* solve. $x'' - x' - 2x = e^t \cos t - t^2 + \cos^3 t$

