Differential Equations Class Notes
\circ

The Superposition Principle and Undetermined Coefficients Revisited (Section 4.5)
We will find general solutions and solve initial value problems involving nonhomogeneous diff. eqs.. We will start with our fundamental theorem.

Theorem 3: The Superposition Principle:

Let y_{1} be a solution to the diff. eq. $a y^{\prime \prime}+b y^{\prime}+c y=f_{1}(t)$. Let y_{2} be a solution to the diff. eq. $a y^{\prime \prime}+b y^{\prime}+c y=f_{2}(t)$. Then for the diff. eq. $a y^{\prime \prime}+b y^{\prime}+c y=k_{1} f_{1}(t)+k_{2} f_{2}(t)$ (where k_{1} and k_{2} are any constants), we know that $k_{1} y_{1}+k_{2} y_{2}$ will be a solution.
expl 1: Through the miracle that is a math book, we know that
 Also, we are given that $y_{2}(t)=t / 4-1 / 8$ is a solution to the diff. eq. $y^{\prime \prime}+2 y^{\prime}+4 y=t$. Use the superposition principle to find solutions to the following.
a.) $y^{\prime \prime}+2 y^{\prime}+4 y=2 t-3 \cos (2 t)$
b.) $y^{\prime \prime}+2 y^{\prime}+4 y=5 t$

We can also use the superposition principle to find a general solution to $a y^{\prime \prime}+b y^{\prime}+c y=f(t)$ by using the fact that a particular solution to it is y_{p} and that the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $c_{1} y_{1}+c_{2} y_{2}$ (where y_{1} and y_{2} are solutions from a previous section). Our next theorem spells this out for initial value problems.

Theorem 4: Existence and Uniqueness: Nonhomogeneous Case:

For any real numbers $a(a \neq 0), b, c, t, Y_{0}$, and Y_{1}, suppose $y_{p}(t)$ is a particular solution to $a y^{\prime \prime}+b y^{\prime}+c y=f(t)$ in an interval I containing t_{0} and that $y_{1}(t)$ and $y_{2}(t)$ are linearly independent solutions to the associated homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ in I. Then there exists a unique solution in I to the initial value problem $a y^{\prime \prime}+b y^{\prime}+c y=f(t), \quad y\left(t_{0}\right)=Y_{0}, \quad y^{\prime}\left(t_{0}\right)=Y_{1}$. This solution is (drum roll please) $y(t)=y_{p}(t)+c_{1} y_{1}(t)+c_{2} y_{2}(t)$ using the appropriate choice of the constants c_{1} and c_{2}.
expl 2: Given the nonhomogeneous equation with a particular solution below, find a general solution.

$$
y^{\prime \prime}+5 y^{\prime}+6 y=6 x^{2}+10 x+2+12 e^{x}, \quad y_{p}(x)=e^{x}+x^{2}
$$

Next, we will see how to solve the type of equation where the nonhomogeneity $f(t)$ follows a specific form, similar to what we saw in a previous section.

Method of Undetermined Coefficients for Certain Nonhomogeneities Involving Polynomials (Revisited):

To find a particular solution to the diff. eq. $a y^{\prime \prime}+b y^{\prime}+c y=P_{m}(t) e^{r t}$ where $P_{m}(t)$ is a polynomial of degree m, use the form $y_{p}(t)=t^{s}\left(A_{m} t^{m}+\ldots+A_{1} t+A_{0}\right) e^{r t}$. We use the following values for s.
i.) Use $s=0$ if r is not a root of the associated auxiliary equation.
ii.) Use $s=1$ if r is a simple root of the associated auxiliary equation.
iii.) Use $s=2$ if r is a double root of the associated auxiliary equation.

To find a particular solution to the diff. eq.
$a y^{\prime \prime}+b y^{\prime}+c y=P_{m}(t) e^{\alpha t} \cos \beta t+Q_{n}(t) e^{\alpha t} \sin \beta t$ where β is non-zero, and where $P_{m}(t)$ is a polynomial of degree m and $Q_{n}(t)$ is a polynomial of degree n, use the form

$$
y_{p}(t)=t^{s}\left(A_{k} t^{k}+\ldots+A_{1} t+A_{0}\right) e^{\alpha t} \cos \beta t+t^{s}\left(B_{k} t^{k}+\ldots+B_{1} t+B_{0}\right) e^{\alpha t} \sin \beta t
$$

Here, k is the larger of m and n. We use the following values for s.
iv.) Use $s=0$ if $\alpha+i \beta$ is not a root of the associated auxiliary equation.
v.) Use $s=1$ if $\alpha+i \beta$ is a simple root of the associated auxiliary equation.

expl 3: Find a general solution to the diff. eq. below. $y^{\prime \prime}-2 y^{\prime}-3 y=3 t^{2}-5$

Derivative Calculator:

There are times when our particular solution $y_{p}(t)$ will be nasty and finding its derivatives will be onerous. If that happens, feel free to use a derivative calculator online. Here are some I found.
https://www.derivative-calculator.net/
https://www.wolframalpha.com/calculators/derivative-calculator

Initial Value Problems:

expl 4: Find the solution to this initial value problem.
$y^{\prime \prime}=6 t, \quad y(0)=3, \quad y^{\prime}(0)=-1$

What if the nonhomogeneity is not one of the types mentioned?

We can break up the right-side nonhomogeneity $f(t)$ if needed and use the Superposition Principle to cobble together a particular solution to more complicated diff. eqs..

We may also need to use such gems as the trig identity $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
expl 5: Determine the form of a particular solution for the diff. eq.. Do not solve. $x^{\prime \prime}-x^{\prime}-2 x=e^{t} \cos t-t^{2}+\cos ^{3} t$

