Differential Equations

 Class Notes

Linear Equations (Section 2.3)
Recall: Definition: A linear first-order differential equation is of the form
$\mathrm{a}_{1}(x) \frac{d y}{d x}+\mathrm{a}_{0}(x) \cdot y=b(x)$. Here, $a_{1}(x), a_{0}(x)$, and $b(x)$ depend only on x, not y. The standard form of a linear diff. eq. is $\frac{d y}{d x}+P(x) \cdot y=Q(x)$.

So, how do we solve them? We have two cases.

Methods for Solving Linear First-order diff. eq.:

Case 1: If $a_{0}(x)=0$, then $\mathrm{a}_{1}(x) \frac{d y}{d x}=b(x)$ and you can solve by solving for $d y / d x$ and integrating. This would get us $\frac{d y}{d x}=\frac{b(x)}{\mathrm{a}_{1}(x)}$ and $y=\int \frac{b(x)}{\mathrm{a}_{1}(x)}+c$ for some $c \in \mathbb{R}$. This assumes that $a_{1}(x)$ is not equal to zero.

Case 2: If $a_{0}(x)=a_{1}^{\prime}(x)$, then the diff. eq. $\mathrm{a}_{1}(x) \frac{d y}{d x}+\mathrm{a}_{0}(x) \cdot y=b(x)$ becomes
$\mathrm{a}_{1}(x) \frac{d y}{d x}+\mathrm{a}_{1}{ }^{\prime}(x) \cdot y=b(x)$. But do you recognize the left side?
This could be written $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{a}_{1}(x) \cdot y\right)=b(x)$. We can integrate this to solve for y, getting $y=\frac{\int b(x) d x+c}{\mathrm{a}_{1}(x)}$.

Case 2 seems like it would be rare too. But, it turns out that any linear $1^{\text {st }}$-order diff. eq. can be turned into a case 2 equation by multiplying be an "integrating factor". We will call this factor $\mu(x)$.

What we will essentially be doing is multiplying our whole equation by $\mu(x)$. If we choose this $\mu(x)$ correctly, that will turn our equation into the form we saw back in case 2 . The book justifies why we use the $\mu(x)$ as defined below.

Method for Solving (Case 2) Linear First-order diff. eq.:

a.) Write the equation in the standard form $\frac{d y}{d x}+P(x) \cdot y=Q(x)$.

c.) Multiply the equation by $\mu(x)$.

This yields $\mu(x) \cdot \frac{d y}{d x}+\mu(x) \cdot P(x) \cdot y=\mu(x) \cdot Q(x)$. More importantly, we see this is equal to

$$
\frac{d}{d x}(\mu(x) \cdot y)=\mu(x) \cdot Q_{0}(x)
$$

Focus on this last form.

In practice, use this last form here to rewrite the equation.
d.) Integrate both sides and divide by $\mu(x)$ to solve for y. This gets us $y=\frac{\int \mu(x) Q(x) d x+c}{\mu(x)}$.

Definition: General solution: This is the solution with the constant of integration above in place. We recently called this a one-parameter family of solutions.
expl 1: Obtain a general solution to the equation below.
$\frac{d y}{d x}=\frac{y}{x}+2 x+1$

Initial Value Problems:

We combine this solution method with an initial value problem set-up and get the following theorem.

Theorem 1: Existence and Uniqueness of Solution:

If $P(x)$ and $Q(x)$ are continuous on an interval (a, b) that contains the point x, then for any choice of initial value y_{0}, there exists a unique solution $y(x)$ on (a, b) to the initial value problem $\frac{d y}{d x}+P(x) \cdot y=Q(x), \quad y\left(x_{0}\right)=y_{0}$.

In fact, the solution is given by $y=\frac{\int \mu(x) Q(x) d x+c}{\mu(x)}$ for a suitable value of c.
expl 2: Solve the initial value problem.
$\frac{d y}{d x}+4 y-e^{-x}=0, \quad y(0)=4 / 3$

expl 3: Application: Secretion of Hormones: The secretion of hormones into the blood is often a periodic activity. If a hormone is secreted on a 24 -hour cycle, then the rate of change in the level of the hormone in the blood may be represented by the initial value problem $\frac{d x}{d t}=\alpha-\beta \cos (\pi \cdot t / 12)-k x, \quad x(0)=x_{0}$. Here, $x(t)$ is the level of the hormone in the blood at time t, α is the average secretion rate, β is the amount of daily variation in the secretion, and k is a positive constant reflecting the rate at which the body removes the hormone from the blood. If $\alpha=\beta=1, k=2$, and $x_{0}=10$, find $x(t)$.

Is this equation linear?

Sometimes an equation will not appear linear because we are thinking of the traditional roles of independent and dependent variables. We will see differential equations where, if we take the x to be the independent and y to be the dependent variables, it will not be linear. However, if we switch that and let the y be the independent variable, it can be shown to be linear. This does not happen in this section but will in the next.

An example is $\theta d r+(3 r-\theta-1) d \theta=0$. We will explore this later. We will see that, if we take θ as the dependent variable, it is not linear. However, if we take r as the dependent variable, it can be shown to be linear.

Worksheet: Separable and Linear Differential Equations Practice:

This worksheet will give you a couple of diff. eq. to practice.

