Differential Equations

Class Notes

Introduction to Systems: Interconnected Fluid Tanks (Section 5.1)
Think back to our problems involving a single closed tank with brine circulating within. We will now add a second tank that is interconnected to the first. Here is a picture.

Figure 5.1 Interconnected fluid tanks

What we see here are two tanks, each with volume 24 liters (L). Tank A has $x(t)$ kilograms (kg) of salt dissolved in the water at time t minutes; Tank B has $y(t)$ kilograms (kg) of salt dissolved in the water at time t minutes. We will take t to be greater than zero. Fresh water enters tank A at the rate of 6 liters per minute on the left; briny water leaves tank B at the rate of 6 liters per minute on the right.

The tanks are interconnected. Briny water flows from tank A to tank B at a rate of 8 liters per minute; Briny water flows from tank B to tank A at a rate of 2 liters per minute. The liquids are kept well stirred so we assume they are homogeneous.

The initial amounts (kg) of salt in tanks A and B are, respectively, $x(0)=x_{0}$ and $y(0)=y_{0}$.
Since the system is being flushed with fresh water, it is true that as $t \rightarrow \infty$, both x and y diminish to zero.

Let's examine the flows and concentrations of salt more closely. As we have seen in a previous section, the salt concentration $(\mathrm{kg} / \mathrm{L})$ in tank A is $\frac{x(t) \mathrm{kg}}{24 \mathrm{~L}}$. The upper pipe carries salt out of tank A at a rate of $\frac{8 L}{1 \text { min }} \cdot \frac{x \mathrm{~kg}}{24 L}=\frac{x \mathrm{~kg}}{3 \text { min }}$. Similarly, the salt concentration $(\mathrm{kg} / \mathrm{L})$ in tank B is $\frac{y(t) \mathrm{kg}}{24 L}$. The lower pipe carries salt into tank A at a rate of $\frac{2 L}{1 \min } \cdot \frac{y \mathrm{~kg}}{24 L}=\frac{y \mathrm{~kg}}{12 \mathrm{~min}}$.

This gives us $\frac{d x}{d t}=$ input rate - output rate $=\frac{y}{12}-\frac{x}{3}$. Similarly, for tank B, we have $\begin{aligned} \frac{d y}{d t} & =\text { input rate - output rate } \\ & =\frac{x}{3}-\left(\frac{2 y}{24}+\frac{6 y}{24}\right) \\ & =\frac{x}{3}-\frac{y}{3}\end{aligned}$

Look at that! We have a system of equations. $x^{\prime}=-\frac{1}{3} x+\frac{1}{12} y$.

$$
y^{\prime}=\frac{1}{3} x-\frac{1}{3} y
$$

Solve the second equation for x and substitute it into the first equation. This yields $x^{\prime}=-\frac{1}{3} x+\frac{1}{12} y$ $\left(3 y^{\prime}+y\right)^{\prime}=-\frac{1}{3}\left(3 y^{\prime}+y\right)+\frac{1}{12} y$

As we have seen before, this can be solved by solving its auxiliary equation, $3 r^{2}+2 r+1 / 4=0$.
We get $r=-1 / 2,-1 / 6$. That gives us a general solution of $y(t)=c_{1} e^{-t / 2}+c_{2} e^{-t / 6}$ where c_{1} and c_{2} are real numbers. Complete the process to find c_{1} and c_{2}.

To finish this out, solve for c_{1} and c_{2} by recalling $x(0)=x_{0}$ and $y(0)=y_{0}$. This yields a system of equations involving c_{1} and c_{2}. This process will be generalized in the next section to find solutions of all linear systems with constant coefficients.

