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Differential Equations  
Class Notes 
Differential Operators and the Elimination Method for Systems (Section 5.2)  

We will solve systems of linear differential equations with constant coefficients. Usually, we see 
two functions that are dependent on the variable  t; often they are called  x(t)  and  y(t).  

Differential Operators:  

Here, we recall to our minds the use of  D  to represent 
d

dt
. As an example, let  2( ) 3 4x t t t  . 

We might write  D[x] = 6t + 4.  

 

 

We might write (D + 2)[x] to mean 2 2 6 4 2
dx

Dx x x t x
dt

      . We see here that you can 

distribute the  [x]  to the parenthetical  (D + 2). Some other properties of real numbers also apply 
as we will see.  

 

expl 1: For 4 5y t  , find the following.  

a.)  D[y] 

 

 

 

b.)  (D – 1)[y] 

 

 

 

Conveniently, these operators work a lot like polynomials. We simply FOIL to find what   
(D + 3)(D – 1) is equal to. Do it now.  

 

 

We solve systems of equations to 
find two related functions. We will 

also see initial value problems.  

Here,  D[x]  or  Dx  means 
dx

dt
. 

Don’t leave  y  in 
there; substitute the 

expression in  t.  

We assume the function 
is differentiable as 

many times as we need. 
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We can simplify things like  
(D + 3)((D – 1)[y]) by first working the  (D – 1)[y]  part. Do that and then continue to interpret 
the  (D + 3)  part. Just use  y  as a generic function using primes to denote derivatives.  

 

 

 

 
 

What is  D2? 
As we saw above, in fact,  D(D[x]) means to take the derivative of the derivative (a 
composition). We will use  D2  to represent the second derivative with respect to  t.  

 

expl 2: Show that  (D – 1)((D + 3)[y])  is the  
same as we got above. What property does that 
reveal about this operator?  

 

 

 

 

 

What this means is that we can treat  aD2 + bD + c  as if it was an ordinary polynomial, as long 
as  a,  b, and  c  are constants. When variables are involved, this does not work.  

expl 3: If we throw a variable into the mix, stuff goes sideways. Take  y  to be a function in  t. 
Show that  (D + 3t)(D[y])  is not the same as D((D + 3t)[y]).  

 

 

 

 

This idea and how we can use 
this with our algebraic rules 

still blows my mind a little bit.  

What did you get? Does 
it match what you got on 

the bottom of page 1?    

We see  (D + 3t)(D[y])  as  
(D + 3t)[yꞌ] = D[yꞌ] + 3tyꞌ. 
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Solving Systems of Linear Differential Equations with Constant Coefficients:  
What we will do in practice is rewrite a system of equations using this derivative operator  D. 
We will then solve it using a procedure that is strikingly similar to the procedure used for 
ordinary linear systems of equations.  

Our method will result in homogeneous and nonhomogeneous linear equations as we solved in 
the last chapter. So, get those Notes out and let’s get going! 

Elimination Method for 2x2 Systems: 

To find the general solution to  1 2 1

3 4 2

[ ] [ ]

[ ] [ ]

L x L y f

L x L y f

 
 

 where  Li  is a polynomial in  D = d/dt, do the 

following.  

 a.) Be sure the system is in operator form.  
 b.) Eliminate one variable – say, y – and solve for the other variable – say  x(t). This  
                  will likely involve our methods for homogeneous and nonhomogeneous equations. 
                  If the system is degenerate – stop! A separate analysis is needed; more on that later.  
 c.) Shortcut: If possible, use the system to derive an equation that involves the variable    
                 you eliminated from the last step (probably  y(t)) but not its derivatives. (Otherwise,    
                 go to step d.) Substitute the found expression for  x(t)  into this equation to get the  y(t)   
                 formula. You will have some constants and so have a general solution for  x(t)  and   
                 y(t). 
 d.) Eliminate the variable you left behind in step b (probably  x), solving for the other.  
                 Again, the methods for homogeneous and nonhomogeneous equations will be needed.  
                 This will yield twice as many constants as are needed; go to step e.  
 e.) Remove extra constants by subbing  x(t)  and  y(t)  into one or both equations in  
                  system. Write  x  and  y  in terms of the remaining constants to obtain the general    
                  solution.   

 

Hey buddy, who you callin’ a degenerate? 
Calm down, don’t take it personally. It’s just your nature.  

Definition: Degenerate system: For the system 1 2 1

3 4 2

[ ] [ ]

[ ] [ ]

L x L y f

L x L y f

 
 

, the system is said to be 

degenerate if and only if  L1L4 – L2L3 = 0.  
 
 

 

Such a system will have either 
no solutions or an infinite 

number of solutions.  
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expl 4: Find a general solution to the linear system. Differentiation is with respect to  t. 

4

x x y

y y x

  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once it’s in  D  form, how do 
you eliminate one variable? 
You’ll solve the resulting 

equation by chapter 4 methods.  

Depending on which variable you solve for 
first, your constants will look different (but 
be equivalent) to the book’s solution. MML 

will specify a starting variable.   
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expl 5: Find a general solution to the linear system. Differentiation is with respect to  t. 
2 0

sin

x y x

x y x y t

   
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The shortcut (step c) is doable. The 
alternative, step d, would have us 

start over with equations to 
eliminate the second variable.  

To find  x: Section 4.2 will get 
us a general solution. Section 

4.4 will get us a particular 
solution. Superposition says 

we can combine them.   
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(extra room for work) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To find  y  through step d: 
Section 4.2 will get us a 

general solution. Section 4.5 
will get us a particular 

solution. Superposition says 
we can combine them.   

But that’s 
unnecessary since 

we will do the 
shortcut in step c. 

Initial Value Problems: 
If given, initial values for  
x  and  y  will enable us to 
solve for the constants in 

the general equations.  
Diff eq is hard but 
algebra is harder!  
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expl 6: A home has two zones, an attic (zone 
A) and a lower, living space (zone B). The 
living space is cooled by an AC unit which 
removes 24,000 Btu/hr. The heat capacity of 
zone B is ½ °F per thousand Btu. The time 
constant for heat transfer between zone A and 
the outside is 2 hours (meaning  K  from our 
heating and cooling section is ½).  

This time constant between B and the outside is 4 hours (K = ¼) and between zones A and B is 4 
hours (K = ¼). If the outside temperature is a constant 100 °F, how warm will it eventually get in 
the attic?   

Let  a(t)  and  b(t)  represent the  
temperatures of the two zones  
at time  t.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We know Newton’s Law of Cooling to be 

 ( ) ( )
dT

K M t T t
dt

  . Use  M(t) = 100.  

The total rate of change in temperature 
for zone A would rely on the outside 

and zone B. The total rate of change in 
temperature for zone B would rely on 
the outside, zone A, and the AC unit.  
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(extra room for work) 
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Optional expl 7: Two large tanks, each holding 100 L of liquid, are interconnected by pipes. The 
liquid flows between them according to the picture here. The liquids inside the tanks are kept 
well stirred. At the left, we see an inlet pipe that delivers a brine solution at a concentration of  
0.2 kg/L of salt. If initially tank A contains no salt and tank B contains 20 kg of salt, determine 
the mass of salt in the tank at time  0t  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rate of change of either  x  or  y  
will be input rate minus output rate.  

The real world 
can get messy. 

Be careful. 
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(extra room for work) 

 

 


