Math 127
Section 10.5
Partial Fraction Decomposition
We will do \#30 and \#24 from the homework section of 10.5 on page 815.

\#30

Write the partial fraction decomposition of $\frac{x^{2}-x-8}{(x+1)\left(x^{2}+5 x+6\right)}$.
We look at the denominator $(x+1)\left(x^{2}+5 x+6\right)$. The question is whether or not the quadratic factor is irreducible. Considering $x^{2}+5 x+6$, notice $b^{2}-4 a c$ is not negative so there are real numbers x_{1} and x_{2} such that $x^{2}+5 x+6=\left(x-x_{1}\right)\left(x-x_{2}\right)$. Factor $x^{2}+5 x+6$ to find $\left(x-x_{1}\right)\left(x-x_{2}\right)$.

This means that the whole denominator is factored as ???

So the denominator of our rational function factors into three non-repeated linear factors. This falls under case one on page 809-810. Hence
$\frac{\mathrm{x}^{2}-\mathrm{x}-8}{(\mathrm{x}+1)(x+3)(x+2)}=\frac{A_{1}}{(\mathrm{x}+1)}+\frac{A_{2}}{(x+3)}+\frac{A_{3}}{(x+2)}$.

To find $\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3} multiply both sides of this equation by the least common denominator. (We will create three equations with three unknowns, which we will then solve.)

We get $\mathrm{x}^{2}-\mathrm{x}-8=A_{1}(x+3)(x+2)+A_{2}(\mathrm{x}+1)(x+2)+A_{3}(\mathrm{x}+1)(x+3)$.
Multiply the factors together on the right side.

We get $\mathrm{x}^{2}-\mathrm{x}-8=A_{1}\left(x^{2}+5 x+6\right)+A_{2}\left(x^{2}+3 x+2\right)+A_{3}\left(x^{2}+4 x+3\right)$.

Notice we can rearrange this into
$\mathrm{x}^{2}-\mathrm{x}-8=\left(A_{1}+A_{2}+A_{3}\right) x^{2}+\left(5 A_{1}+3 A_{2}+4 A_{3}\right) x+\left(6 A_{1}+2 A_{2}+3 A_{3}\right)$.
This means $\left(\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}\right) \mathrm{x}^{2}=1 \mathrm{x}^{2}$. We also get $\left(5 A_{1}+3 A_{2}+4 A_{3}\right) x=-\mathrm{x}$ and $\left(6 A_{1}+2 A_{2}+3 A_{3}\right)=-8$.

Dividing the first two equations by x^{2} and x respectively, we see that $A_{1}+A_{2}+A_{3}=1$.
Likewise, $5 \mathrm{~A}_{1}+3 \mathrm{~A}_{2}+4 \mathrm{~A}_{3}=-1$
and $\quad 6 \mathrm{~A}_{1}+2 \mathrm{~A}_{2}+3 \mathrm{~A}_{3}=-8$.

Notice this is a system of three equations in three variables. Form a 3×4 matrix with these equations and use the calculator to solve them. What are the values of $\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3} ?

This means $\frac{\mathrm{x}^{2}-\mathrm{x}-8}{(\mathrm{x}+1)(x+3)(x+2)}=\frac{-3}{(\mathrm{x}+1)}+\frac{2}{(x+3)}+\frac{2}{(x+2)}$. You could check this result by adding the fractions on the right to see if the sum is indeed equal to the left.

Write the partial fraction decomposition of $\frac{10 x^{2}+2 x}{(x-1)^{2}\left(x^{2}+2\right)}$.

Notice the denominator contains an irreducible quadratic factor $\left(x^{2}+2\right)$ and a repeated linear factor $(x-1)^{2}$. This falls under case $2(\mathrm{pg} 811)$ and case $3(\operatorname{pg} 813)$.

Hence the decomposition of $\frac{10 x^{2}+2 x}{(x-1)^{2}\left(x^{2}+2\right)}$ has the terms $\frac{A_{1}}{(x-1)}$ and $\frac{A_{2}}{(x-1)^{2}}$. This takes care of the $(x-1)^{2}$ part as per case 2. (A note for understanding: If the denominator contained $(x-1)^{3}$ instead of $(x-1)^{2}$, we would also have the term $\frac{A_{3}}{(x-1)^{3}}$. However, this is not the case.)

The decomposition also has the term $\frac{A_{3} x+B}{\left(x^{2}+2\right)}$. This takes care of the $\left(\mathrm{x}^{2}+2\right)$ part as per case 3.

So we have $\frac{10 x^{2}+2 x}{(x-1)^{2}\left(x^{2}+2\right)}=\frac{A_{1}}{(x-1)}+\frac{A_{2}}{(x-1)^{2}}+\frac{A_{3} x+B}{\left(x^{2}+2\right)}$. Multiply by the least common denominator $(\mathrm{x}-1)^{2}\left(\mathrm{x}^{2}+2\right)$ to start solving for $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, and B .

We get $10 x^{2}+2 x=A_{1}(x-1)\left(x^{2}+2\right)+A_{2}\left(x^{2}+2\right)+\left(A_{3} x+B\right)(x-1)^{2}$. Multiply the factors together on the right side.

Now organize the x^{3} terms so they are together. Do the same for the x^{2} terms, the x terms, and the constant terms.

$$
\begin{array}{rll}
\text { This leads us to } \mathrm{A}_{1} & +\mathrm{A}_{3} & =0 \\
-\mathrm{A}_{1}+\mathrm{A}_{2} & -2 \mathrm{~A}_{3}+\mathrm{B} & =10 \\
2 \mathrm{~A}_{1} & +\mathrm{A}_{3}-2 \mathrm{~B} & =2 \\
-2 \mathrm{~A}_{1}+2 \mathrm{~A}_{2} & & +\mathrm{B}
\end{array}=0
$$

Use your calculator to solve this system. Put it in as a 4×5 matrix and perform RREF.

This should give you $\mathrm{A}_{1}=\frac{14}{3}, \mathrm{~A}_{2}=4, \mathrm{~A}_{3}=\frac{-14}{3}$, and $\mathrm{B}=\frac{4}{3}$.

This means that $\frac{10 x^{2}+2 x}{(x-1)^{2}\left(x^{2}+2\right)}=\frac{14}{3(x-1)}+\frac{4}{(x-1)^{2}}+\frac{-14 x+4}{3\left(x^{2}+2\right)}$.

