Math 127 Section 10.5 Partial Fraction Decomposition

We will do #30 and #24 from the homework section of 10.5 on page 815.

#30

Write the partial fraction decomposition of
$$\frac{x^2 - x - 8}{(x+1)(x^2 + 5x + 6)}$$
.

We look at the denominator $(x+1)(x^2+5x+6)$. The question is whether or not the quadratic factor is irreducible. Considering x^2+5x+6 , notice b^2 - 4ac is <u>not</u> negative so there are real numbers x_1 and x_2 such that $x^2+5x+6=(x-x_1)(x-x_2)$. Factor x^2+5x+6 to find $(x-x_1)(x-x_2)$.

This means that the whole denominator is factored as ???

So the denominator of our rational function factors into three non-repeated linear factors. This falls under case one on page 809-810. Hence

$$\frac{x^2 - x - 8}{(x+1)(x+3)(x+2)} = \frac{A_1}{(x+1)} + \frac{A_2}{(x+3)} + \frac{A_3}{(x+2)}.$$

To find A_1 , A_2 , and A_3 multiply both sides of this equation by the least common denominator. (We will create three equations with three unknowns, which we will then solve.)

We get $x^2 - x - 8 = A_1(x+3)(x+2) + A_2(x+1)(x+2) + A_3(x+1)(x+3)$. Multiply the factors together on the right side.

We get
$$x^2 - x - 8 = A_1(x^2 + 5x + 6) + A_2(x^2 + 3x + 2) + A_3(x^2 + 4x + 3)$$
.

Notice we can rearrange this into

$$x^{2} - x - 8 = (A_{1} + A_{2} + A_{3})x^{2} + (5A_{1} + 3A_{2} + 4A_{3})x + (6A_{1} + 2A_{2} + 3A_{3}).$$

This means $(A_1 + A_2 + A_3) x^2 = 1 x^2$. We also get $(5A_1 + 3A_2 + 4A_3)x = -x$ and $(6A_1 + 2A_2 + 3A_3) = -8$.

Dividing the first two equations by x^2 and x respectively,

we see that $A_1 + A_2 + A_3 = 1$.

Likewise, $5A_1 + 3A_2 + 4A_3 = -1$

and $6A_1 + 2A_2 + 3A_3 = -8$.

Notice this is a system of three equations in three variables. Form a 3x4 matrix with these equations and use the calculator to solve them. What are the values of A_1 , A_2 , and A_3 ?

This means $\frac{x^2 - x - 8}{(x+1)(x+3)(x+2)} = \frac{-3}{(x+1)} + \frac{2}{(x+3)} + \frac{2}{(x+2)}$. You could check this result by adding the fractions on the right to see if the sum is indeed equal to the left.

Write the partial fraction decomposition of
$$\frac{10x^2 + 2x}{(x-1)^2(x^2+2)}$$
.

Notice the denominator contains an irreducible quadratic factor $(x^2 + 2)$ and a repeated linear factor $(x - 1)^2$. This falls under case 2 (pg 811) and case 3 (pg 813).

Hence the decomposition of $\frac{10x^2 + 2x}{(x-1)^2(x^2 + 2)}$ has the terms $\frac{A_1}{(x-1)}$ and $\frac{A_2}{(x-1)^2}$. This takes care of the $(x-1)^2$ part as per case 2. (A note for understanding: If the denominator contained $(x-1)^3$ instead of $(x-1)^2$, we would also have the term $\frac{A_3}{(x-1)^3}$. However, this is not the case.)

The decomposition also has the term $\frac{A_3x+B}{(x^2+2)}$. This takes care of the (x^2+2) part as per case 3.

So we have $\frac{10x^2 + 2x}{(x-1)^2(x^2 + 2)} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3x + B}{(x^2 + 2)}$. Multiply by the least common denominator $(x-1)^2(x^2 + 2)$ to start solving for A_1 , A_2 , A_3 , and B.

We get $10x^2 + 2x = A_1(x - 1)(x^2 + 2) + A_2(x^2 + 2) + (A_3x + B)(x - 1)^2$. Multiply the factors together on the right side.

Now organize the x^3 terms so they are together. Do the same for the x^2 terms, the x terms, and the constant terms.

Use your calculator to solve this system. Put it in as a 4x5 matrix and perform RREF.

This should give you
$$A_1 = \frac{14}{3}$$
, $A_2 = 4$, $A_3 = \frac{-14}{3}$, and $B = \frac{4}{3}$.

This means that
$$\frac{10x^2 + 2x}{(x-1)^2(x^2+2)} = \frac{14}{3(x-1)} + \frac{4}{(x-1)^2} + \frac{-14x+4}{3(x^2+2)}$$
.